[1] Zelič K, Burja J, McGuiness P J, et al. Effect of rare earth elements on the morphology of eutectic carbides in AISI D2 tool steels: Experimental and modelling approaches[J]. Scientific Reports, 2018, 8(1): 9233.
[2] Kang M, Jung M, Lee H, et al.Microstructural evolution during austenitization and quenching of a 5% Cr work roll[J]. Materials Transactions, 2012, 53(11): 1915-1921.
[3] Kheirandish S, Saghafian H, Hedjazi J, et al.Effect of heat treatment on microstructure of modified cast AISI D3 cold work tool steel[J]. Journal of Iron and Steel Research International, 2010, 17(9): 40-45, 52.
[4] 黄顶俊, 杨弋涛. 5Cr8Mo2SiV钢淬火和回火过程中碳化物的析出[J]. 金属热处理, 2017, 42(3): 98-103.
Huang Dingjun, Yang Yitao.Carbide precipitation behavior of 5Cr8Mo2SiV steel during quenching and tempering[J]. Heat Treatment of Metals, 2017, 42(3): 98-103.
[5] Sapate S G, RamaRao A V. Effect of carbide volume fraction on erosive wear behaviour of hardfacing cast irons[J]. Wear, 2004, 256(7/8): 774-786.
[6] Chotěborský R. Effect of heat treatment on the microstructure, hardness and abrasive wear resistance of high chromium hardfacing[J]. Research in Agricultural Engineering, 2013, 59(1): 23-28.
[7] Das D, Dutta A K, Ray K K.Influence of varied cryotreatment on the wear behavior of AISI D2 steel[J]. Wear, 2009, 266(1/2): 297-309.
[8] Hanlon D N, Rainforth W M, Sellars C M. The effect of processing route, composition and hardness on the wear response of chromium bearing steels in a rolling-sliding configuration[J]. Wear, 1997, 203-204: 220-229.
[9] Syn C K, Lesuer D R, Sherby O D.Influence of microstructure on tensile properties of spheroidized ultrahigh-carbon (1.8 Pct C) steel[J]. Metallurgical and Materials Transactions A, 1994, 25(7): 1481-1493.
[10] Zheng C, Li L, Yang W, et al.Microstructure evolution and mechanical properties of eutectoid steel with ultrafine or fine (ferrite+cementite) structure[J]. Materials Science and Engineering A, 2014, 599: 16-24.
[11] Lu L, Soda H, McLean A. Microstructure and mechanical properties of Fe-Cr-C eutectic composites[J]. Materials Science and Engineering A, 2003, 347(1/2): 214-222.
[12] Fischer G, Nellesen J, Anar N B, et al.3D analysis of micro-deformation in VHCF-loaded nodular cast iron by μCT[J]. Materials Science and Engineering A, 2013, 577: 202-209.
[13] 陈俊丹, 莫文林, 王培, 等. 回火温度对42CrMo钢冲击韧性的影响[J]. 金属学报, 2012, 48(10): 1186-1193.
Chen Jundan, Mo Wenlin, Wang Pei, et al.Effects of tempering temperature on the impact toughness of steel 42CrMo[J]. Acta Metallurgica Sinica, 2012, 48(10): 1186-1193.
[14] 闫伟, 高士友, 邰清安, 等. 4Cr5W2VSi模具钢的组织及力学性能[J]. 金属热处理, 2017, 42(3): 113-119.
Yan Wei, Gao Shiyou, Tai Qing'an, et al.Microstructure and mechanical properties of 4Cr5W2VSi mold steel[J]. Heat Treatment of Metals, 2017, 42(3): 113-119.
[15] Golozar M A.Optimizing the microstructure and mechanical properties of as-cast hot rolling sleeves by heat treatment[J]. Materials and Manufacturing Processes, 2000, 15(3): 377-394.
[16] Wang S Q, Jiang Q C, Cui X H, et al.Influence of trace elements and heat treatment on carbide morphology and properties of CD-2 steel[J]. Materials Science and Engineering A, 1999, 264(1/2): 172-176.
[17] Liu H, Fu P, Liu H, et al.Carbides evolution and tensile property of 4Cr5MoSiV1 die steel with rare earth addition[J]. Metals, 2017, 7(10): 436.
[18] Fukaura K, Yokoyama Y, Yokoi D, et al.Fatigue of cold-work tool steels: Effect of heat treatment and carbide morphology on fatigue crack formation, life, and fracture surface observations[J]. Metallurgical and Materials Transactions A, 2004, 35(4): 1289-1300.
[19] Kim K H, Park S D, Kim J H, et al.Role of spheroidized carbides on the fatigue life of bearing steel[J]. Metals and Materials International, 2012, 18(6): 917-921.
[20] Picas I, Cuadrado N, Casellas D, et al.Microstructural effects on the fatigue crack nucleation in cold work tool steels[J]. Procedia Engineering, 2010, 2(1): 1777-1785.
[21] Qu M, Wang Z, Li H, et al.Effects of mischmetal addition on phase transformation and as-cast microstructure characteristics of M2 high-speed steel[J]. Journal of Rare Earths, 2013, 31(6): 628-633.
[22] Hamidzadeh M A, Meratian M, Saatchi A.Effect of cerium and lanthanum on the microstructure and mechanical properties of AISI D2 tool steel[J]. Materials Science and Engineering A, 2013, 571: 193-198.
[23] Mao M, Guo H, Wang F, et al.Effect of cooling rate on the solidification microstructure and characteristics of primary carbides in H13 steel[J]. ISIJ International, 2019, 59(5): 848-857.
[24] Liu Q X, Lu D P, Lu L, et al.Effect of mischmetal on as-cast microstructure and mechanical properties of M2 high speed steel[J]. Journal of Iron and Steel Research International, 2015, 22(3): 245-249.
[25] Wang M, Mu S, Sun F, et al.Influence of rare earth elements on microstructure and mechanical properties of cast high-speed steel rolls[J]. Journal of Rare Earths, 2007, 25(4): 490-494.
[26] Zhou X F, Zhu W L, Jiang H B, et al.A new approach for refining carbide dimensions in M42 super hard high-speed steel[J]. Journal of Iron and Steel Research International, 2016, 23(8): 800-807.
[27] Di H, Zhang X, Wang G, et al.Spheroidizing kinetics of eutectic carbide in the twin roll-casting of M2 high-speed steel[J]. Journal of Materials Processing Technology, 2005, 166(3): 359-363.
[28] Lee E S, Park W J, Jung J Y, et al.Solidification microstructure and M2C carbide decomposition in a spray-formed high-speed steel[J]. Metallurgical and Materials Transactions A, 1998, 29(5): 1395-1404.
[29] Pan F S, Wang W Q, Tang A T, et al.Phase transformation refinement of coarse primary carbides in M2 high speed steel[J]. Progress in Natural Science: Materials International, 2011, 21(2): 180-186.
[30] Giacchi J V, Fornaro O, Palacio H.Microstructural evolution during solution treatment of Co-Cr-Mo-C biocompatible alloys[J]. Materials Characterization, 2012, 68: 49-57.
[31] 闫志杰, 王睿, 康燕, 等. 一种用于细化钢铁中碳化物的变质剂: 中国, 201710724893.8[P].2019-12-10.
[32] Qian M.In-situ observations of the dissolution of carbides in an Fe-Cr-C alloy[J]. Scripta Materialia, 1999, 41(12): 1301-1303.
[33] Liu Q, Hedström P, Zhang H, et al.Effect of heat treatment on microstructure and mechanical properties of Ti-alloyed hypereutectic high chromium cast iron[J]. ISIJ International, 2012, 52(12): 2288-2294.
[34] Nykiel T, Hryniewicz T.Quantitative approach to coagulation, coalescence, and polygonization of carbides in the NCWV/D3 tool steel[J]. Metallurgical and Materials Transactions A, 2000, 31(10): 2661-2665.
[35] Wiengmoon A, Chairuangsri T, Pearce J T H. A Microstructural study of destabilised 30wt%Cr-2.3wt%C high chromium cast iron[J]. ISIJ International, 2004, 44(2): 396-403.
[36] Meyers M A, Chawla K K.Fracture: Microscopic Aspects[M]. Cambridge: Cambridge University Press, 2012.
[37] Lawn B.Fracture of Brittle Solids[M]. Cambridge: Cambridge University Press, 1993.
[38] Garrison W M, Moody N R.Ductile fracture[J]. Journal of Physics and Chemistry of Solids, 1987, 48(11): 1035-1074.
[39] Rosenfield A R, Hahn G T, Embury J D.Fracture of steels containing pearlite[J]. Metallurgical Transactions, 1972, 3(11): 2797-2804.
[40] Kelly A.The strengthening of metals by dispersed particles[J]. Proceedings of the Royal Society A, 1964, 282(1388): 63-79.
[41] Gurland J.Observations on the fracture of cementite particles in a spheroidized 1.05%C steel deformed at room temperature[J]. Acta Metallurgica, 1972, 20(5): 735-741.
[42] Tanaka K, Mori T, Nakamura T.Cavity formation at the interface of a spherical inclusion in a plastically deformed matrix[J]. The Philosophical Magazine, 1970, 21(170): 267-279. |