[1] Sun J, Zhang X B, Zhang Y J, et al.Effect of alloy elements on the morphology transformation of TiB2 particles in Al matrix[J]. Micron, 2015, 70: 21-25 [2] 王孟君, 黄电源, 姜海涛. 汽车用铝合金的研究进展[J]. 金属热处理, 2006, 31(9): 34-38. Wang Mengjun, Huang Dianyuan, Jiang Haitao.Research progress of aluminium alloys for the automotive industry[J]. Heat Treatment of Metals, 2006, 31(9): 34-38. [3] 武高辉. 金属基复合材料发展的挑战与机遇[J]. 复合材料学报, 2014, 31(5): 1228-1237. Wu Gaohui.Development challenge and opportunity of metal matrix composites[J]. Acta Materiae Compositae Sinica, 2014, 31(5): 1228-1237. [4] Saheb N, Iqbal Z, Khalil A, et al.Spark plasma sintering of metals and metal matrix nanocomposites: A Review[J]. Journal of Nanomaterials, 2012, 2012: 983470. [5] Thirumoorthy A, Arjunan T V, Senthil Kumar K L. Latest research development in aluminum matrix with particulate reinforcement composites—A review[J]. Materials Today Proceedings, 2018, 5(1): 1657-1665. [6] Sebaie O E, Samuel A M, Samuel F H, et al.The effects of mischmetal, cooling rate and heat treatment on the eutectic Si particle characteristics of A319.1, A356.2 and A413.1 Al-Si casting alloys[J]. Materials Science and Engineering A, 2008, 480(1/2): 342-355. [7] Li QL, Li B Q, Li J B, et al.Effects of the addition of Mg on the microstructure and mechanical properties of hypoeutectic Al-7%Si alloy[J]. International Journal of Metalcasting, 2017, 11(4): 823-830. [8] Zhu M, Jian Z, Yang G, et al.Effects of T6 heat treatment on the microstructure, tensile properties, and fracture behavior of the modified A356 alloys[J]. Materials and Design, 2012, 36: 243-249. [9] Azadi M, Shirazabad M M.Heat treatment effect on thermo-mechanical fatigue and low cycle fatigue behaviors of A356.0 aluminum alloy[J]. Materials and Design, 2013, 45: 279-285. [10] Hekmat-Ardakan A, Liu X, Ajersch F, et al.Wear behaviour of hypereutectic Al-Si-Cu-Mg casting alloys with variable Mg contents[J]. Wear, 2010, 269(9): 684-692. [11] Xing P, Gao B, Zhuang Y, et al.Effect of erbium on properties and microstructure of Al-Si eutectic alloy[J]. Journal of Rare Earths, 2010, 28(6): 927-930. [12] Yu Y, Shi Y W, Xia Z D.Effect of rare earth element Er on microstructure and properties of Al-Si-Cu solder alloy[J]. Journal of Bjing University of Technology, 2006, 32(12): 1148-1152. [13] Park C, Kim S, Kwon Y, et al.Mechanical and corrosion properties of rheocastand low-pressure cast A356-T6 alloy[J]. Materials Science and Engineering A, 2005, 391(1/2): 86-94. [14] Mcdowell D L, Gall K, Horstemeyer M F, et al.Microstructure-based fatigue modeling of cast A356-T6 alloy[J]. Engineering Fracture Mechanics, 2003, 70(1): 49-80. [15] Dolatkhah A, Golbabaei P, Givi M K B, et al. Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing[J]. Materials and Design, 2012, 37: 458-464. [16] Sajjadi S A, Ezatpour H R, Beygi H.Microstructure and mechanical properties of Al-Al2O3 micro and nano composites fabricated by stir casting[J]. Materials Science and Engineering A, 2011, 528(29/30): 8765-8771. [17] Jerome S, Ravisankar B, Mahato P K, et al.Synthesis and evaluation of mechanical and high temperature tribological properties of in-situ Al-TiC composites[J]. Tribology International, 2010, 43(11): 2029-2036. [18] Feng C F, Froyen L.Microstructures of in situ Al/TiB2 MMCs prepared by a casting route[J]. Journal of Materials Science, 2000, 35(4): 837-850. [19] Kumar S, Sarma V S, Murty B S.A statistical analysis on erosion wear behaviour of A356 alloy reinforced with in situ formed TiB2 particles[J]. Materials Science and Engineering A, 2008, 476(1/2): 333-340. [20] Gao Qi, Wu Shusen, Lü Shulin, et al.Preparation of in-situ 5vol% TiB2 particulate reinforced Al-4.5Cu alloy matrix composites assisted by improved mechanical stirring process[J]. Materials and Design, 2016, 94: 79-86. [21] Kumar S, Sarma V S, Murty B S.A statistical analysis on erosion wear behaviour of A356 alloy reinforced with in situ formed TiB2particles[J]. Materials Science and Engineering A, 2008, 476(1/2): 333-340. [22] Li H, Chai L, Wang H, et al.Fabrication of TiB2/Al composite by melt-SHS process with different content of titanium powder[J]. Journal of Materials Research, 2017, 32(12): 2352-2360. [23] Suh Y S, Joshi S P, Ramesh K T.An enhanced continuum model for size-dependent strengthening and failure of particle-reinforced composites[J]. Acta Materialia, 2009, 57(19): 5848-5861. [24] 沈月, 何国球, 田丹丹, 等. 二次枝晶臂间距对A319铝合金拉伸及疲劳性能的影响[J]. 材料研究学报, 2014, 28(8): 587-593. Shen Yue, He Guoqiu, Tian Dandan, et al.Effect of secondary dendrite arm spacing on tensile property and fatigue behavior of A319 aluminum alloy[J]. Chinese Journal of Materials Research, 2014, 28(8): 587-593. [25] Vandersluis E, Ravindran C.Comparison ofmeasurement methods for secondary dendrite arm spacing[J]. Metallography, Microstructure, and Analysis, 2017, 6(1): 89-94. [26] Zeren M.The effect of heat-treatment on aluminum-based piston alloys[J]. Materials and Design, 2007, 28(9): 2511-2517. [27] Birol Y.Response to artificial ageing of dendritic and globular Al-7Si-Mg alloys[J]. Journal of Alloys and Compounds, 2009, 484(1/2): 164-167. |