[1] Ye Y F,Wang Q,Lu J,et al.High-entropy alloy:Challenges and prospects[J].Materials Today,2016,19:349-362. [2] Chowdhury P,Canadinc D,Sehitoglu H.On deformation behavior of Fe-Mn based structural alloys[J].Materials Science and Engineering R,2017,122:1-28. [3] Yeh J W,Chen S K,Lin S J,et al.Nanostructured high entropy alloys with multiple principal elements:novel alloy design condepts and outcomes[J].Advanced Engineering Materials,2004,6:299-303. [4] Cantor B,Chang I T H,Knight P,et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science and Engineering A,2004,375-377:213-218. [5] Zhang W,Liaw P K,Zhang Y.Science and technology in high-entropy alloys[J].Science China Materials,2018,61:2-22. [6] Zhu C,Lu Z P,Nieh T G.Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy[J].Acta Materialia,2013,61:2993-3001. [7] Ma Y,Wang Q,Jiang B B,et al.Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions[J].Acta Materialia,2018,147:213-225. [8] Qiao J W,Bao M L,Zhao Y J,et al.Rare-earth high entropy alloys with hexagonal close-packed structure[J].Journal of Applied Physics,2018,124:195101. [9] 鲍美林,乔珺威.密排六方结构高熵合金研究进展[J].中国材料进展,2018,37(4):264-272+281. Bao Meilin,Qiao Junwei.Research progress of hexagonal close-packed high-entropy alloys[J].Materials China,2018,37(4):264-272+281. [10] Miracle D B,Senkov O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511. [11] Ma D,Grabowski B,Körmann F,et al.Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy:Importance of entropy contributions beyond the configurational one[J].Acta Materialia,2015,100:90-97. [12] Li Z,Raabe D.Strong and ductile non-equiatomic high-entropy alloys:Design,processing,microstructure,and mechanical properties[J].JOM,2017,69:2099-2106. [13] Li Z,Pradeep K G,Deng Y,et al.Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J].Nature,2016,534:227-30. [14] Allain S,Chateau J P,Bouaziz O,et al.Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys[J].Materials Science and Engineering A,2004,387-389:158-162. [15] Wong S L,Madivala M,Prahl U,et al.A crystal plasticity model for twinning- and transformation-induced plasticity[J].Acta Materialia,2016,118:140-151. [16] Mahajan S,Chin G Y.Formation of deformation twins in F.C.C.crystals[J].Acta Metallurgica,1973,21:1353-1363. [17] Mahajan S,Green M L,Brasen D.A model for the FCC/HCP transformation:Its applications,and experimental evidence[J].Metallurgical and Materials Transactions A,1977,8:283-293. [18] An X H,Wu S D,Wang Z G,et al.Significance of stacking fault energy in bulk nanostructured materials:Insights from Cu and its binary alloys as model systems[J].Progress in Materials Science,2019,101:1-45. [19] F Otto A D, Somsen Ch,Bei H,et al.The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J].Acta Materialia,2013,61:5743-5755. [20] Hirth J P.Thermodynamics of stacking faults[J].Metallurgical Transactions,1970,1:2367-2374. [21] Zaddach A J,Niu C,Koch C C,et al.Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy[J].JOM,2013,65:1780-1789. [22] Deng Y,Tasan C C,Pradeep K G,et al.Design of a twinning-induced plasticity high entropy alloy[J].Acta Materialia,2015,94:124-133. [23] 代永娟,唐 荻,米振莉,等.锰元素对TWIP钢层错能和变形机制的影响[J].材料工程,2009(7):39-42. Dai Yongjuan,Tang Di,Mi Zhenli,et al.The influence of manganese on the stacking fault energy and deformation mechanisms of the TWIP steel[J].Journal of Materials Engineering,2009(7):39-42. [24] Ishida K,Nishizawa T.Effect of alloying elements on stability of epsilon iron[J].Transactions of the Japan Institute of Metals,1974,15:225-231. [25] Breedis J F,Kaufman L.The formation of hcp and bcc phases in austenitic iron alloys[J].Metallurgical and Materials Transactions B,1971,2:2359-2371. [26] Li Z,Tasan C C,Springer H,et al.Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys[J].Scientific Reports,2017(7):40704. [27] 刘 怡,涂 坚,杨威华,等.形变及退火工艺对Fe47Mn30Co10Cr10B3双相高熵合金组织演变的影响[J].金属学报,2020,56(12):39-42. Liu Yi,Tu Jian,Yang Weihua,et al.Effect of deformation and annealing treatment on microstructure evolution of Fe47Mn30Co10Cr10B3 dual-phase high-entropy alloy[J].Acta Metallurgica Sinica,2020,56(12):39-42. [28] Zhang W,Yan D,Lu W,et al.Carbon and nitrogen co-doping enhances phase stability and mechanical properties of a metastable high-entropy alloy[J].Journal of Alloys and Compounds,2020,831:154799. [29] Zhu S,Yan D,Gan K,et al.Awakening the metastability of an interstitial high entropy alloy via severe deformation[J].Scripta Materialia,2021,191:96-100. [30] Li Z,Körmann F,Grabowski B,et al.Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity[J].Acta Materialia,2017,136:262-270. [31] Mohammad-Ebrahimi M H,Zarei-Hanzaki A,Abedi H R,et al.The enhanced static recrystallization kinetics of a non-equiatomic high entropy alloy through the reverse transformation of strain induced martensite[J].Journal of Alloys and Compounds,2019,806:1550-1563. [32] Li G,Liu M,Lyu S,et al.Simultaneously enhanced strength and strain hardening capacity in FeMnCoCr high-entropy alloy via harmonic structure design[J].Scripta Materialia,2021,191:196-201. [33] Nene S S,Sinha S,Frank M,et al.Unexpected strength-ductility response in an annealed,metastable,high-entropy alloy[J].Applied Materials Today,2018,13:198-206. [34] Liu K,Nene S S,Frank M,et al.Extremely high fatigue resistance in an ultrafine grained high entropy alloy[J].Applied Materials Today,2019,15:525-530. [35] Sinha S,Nene S S,Frank M,et al.Revealing the microstructural evolution in a high entropy alloy enabled with transformation,twinning and precipitation[J].Materialia,2019,6:100310. [36] Sinha S,Nene S S,Frank M,et al.Deformation mechanisms and ductile fracture characteristics of a friction stir processed transformative high entropy alloy[J].Acta Materialia,2020,184:164-178. [37] Sha C,Zhou Z,Xie Z,et al.Extremely hard,α-Mn type high entropy alloy coatings[J].Scripta Materialia,2020,178:477-482. [38] Aguilar-Hurtado J Y,Vargas-Uscategui A,Paredes-Gil K,et al.Boron addition in a non-equiatomic Fe50Mn30Co10Cr10 alloy manufactured by laser cladding:Microstructure and wear abrasive resistance[J].Applied Surface Science,2020,515:146084. [39] Li Z,Raabe D.Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy[J].Materials Chemistry and Physics,2018,210:29-36. [40] Springer H,Raabe D.Rapid alloy prototyping:Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn-1.2C-xAl triplex steels[J].Acta Materialia,2012,60:4950-4959. [41] Li Z,Tasan C C,Pradeep K G,et al.A TRIP-assisted dual-phase high-entropy alloy:Grain size and phase fraction effects on deformation behavior[J].Acta Materialia,2017,131:323-335. [42] Chen L B,Wei R,Tang K,et al.Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility[J].Materials Science and Engineering A,2018,716:150-156. [43] Chen L B,Wei R,Tang K,et al.Ductile-brittle transition of carbon alloyed Fe40Mn40Co10Cr10 high entropy alloys[J].Materials Letters,2019,236:416-419. [44] Wang M,Li Z,Raabe D.In-situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy[J].Acta Materialia,2018,147:236-246. [45] Lu W,Liebscher C H,Dehm G,et al.Bidirectional transformation enables hierarchical nanolaminate dual-phase high-entropy alloys[J].Advanced Materials,2018,30:1804727. [46] Su J,Wu X,Raabe D,et al.Deformation-driven bidirectional transformation promotes bulk nanostructure formation in a metastable interstitial high entropy alloy[J].Acta Materialia,2019,167:23-39. [47] Su J,Raabe D,Li Z.Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy[J].Acta Materialia,2019,163:40-54. [48] Wang Z,Lu W,Raabe D,et al.On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions[J].Journal of Alloys and Compounds,2019,781:734-743. [49] He Z F,Jia N,Ma D,et al.Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures[J].Materials Science and Engineering A,2019,759:437-447. [50] Zhang T W,Ma S G,Zhao D,et al.Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension:Micromechanism and constitutive modeling[J].International Journal of Plasticity,2020,124:226-246. [51] Yang S,Yang Y.Thermodynamics-kinetics of twinning/martensitic transformation in Fe50Mn30Co10Cr10 high-entropy alloy during adiabatic shearing[J].Scripta Materialia,2020,181:115-120. [52] He Z F,Jia N,Wang H W,et al.The effect of strain rate on mechanical properties and microstructure of a metastable FeMnCoCr high entropy alloy[J].Materials Science and Engineering A,2020,776:138982. |