[1]张 文, 朱百智, 黄振建, 等. 淬火介质对42CrMo钢棒淬火组织及硬度影响的数值模拟及试验验证[J]. 金属热处理, 2020, 45(1): 56-60. Zhang Wen, Zhu Baizhi, Huang Zhenjian, et al. Numerical simulation and experimental verification of effect of quenching medium on quenching microstructure and hardness of 42CrMo steel rod[J]. Heat Treatment of Metals, 2020, 45(1): 56-60. [2]刘 杰, 李萌蘖, 李绍宏, 等. 42CrMo钢船用曲拐加热和淬火过程数值模拟[J]. 金属热处理, 2019, 44(11): 188-195. Liu Jie, Li Mengnie, Li Shaohong, et al. Numerical simulation of heating and quenching process of 42CrMo steel crankshaft[J]. Heat Treatment of Metals, 2019, 44(11): 188-195. [3]刘全坤. 材料成形基本原理[M]. 北京: 机械工业出版社, 2010. [4]向小琴. 大型齿圈锻件晶粒和组织均匀性的改善[J]. 金属热处理, 2019, 44(10): 122-124. Xiang Xiaoqin. Improvement in grain size and microstructure uniformity of heavy ring gear forgings[J]. Heat Treatment of Metals, 2019, 44(10): 122-124. [5]张增超. 晶粒尺度、碳含量对CrMo钢组织转变与热物性参数的影响[D]. 上海: 上海交通大学, 2018. [6]赵洪壮, Lee Youngkook, 刘相华, 等. 奥氏体晶粒度对AISI 4340钢贝氏体相变动力学的影响[J]. 材料热处理学报, 2006, 27(2): 59-62. Zhao Hongzhuang, Lee Youngkook, Liu Xianghua, et al. Effect of austenite grain size on bainite transformation kinetics of AISI 4340 steel[J]. Transactions of Materials and Heat Treatment, 2006, 27(2): 59-62. [7]Beck P A, Kremer J C, Demer L J, et al. Grain growth in high-purity aluminium-magnesium alloy[J]. Metallurgical and Materials Transactions A, 1948, 175: 372-394. [8]Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metal Science, 1979, 13(3/4): 187-194. [9]Anelli E. Application trolled mathematical modeling to hot rolling and con-cooling of wire rods and bars of C-Mn[J]. ISIJ International, 1992, 32: 440-449. [10]Liu J, Cui Z, Ruan L. A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B[J]. Materials Science and Engineering A, 2011, 529: 300-310. [11]李立新, 汪凌云, 周家林, 等. 等温条件下晶粒长大模型研究[J]. 武汉科技大学学报(自然科学版), 2002(4): 335-336. Li Lixin, Wang Lingyun, Zhou Jialin, et al. Development of a model of isothermal grain growth[J]. Journal of Wuhan University of Science and Technology, 2002(4): 335-336. [12]李 伟, 陈文琳, 吴 跃, 等. 42CrMo钢加热时奥氏体晶粒长大演化规律[J]. 材料热处理学报, 2015, 36(1): 104-108. Li Wei, Chen Wenlin, Wu Yue, et al. Austenite grain growth behaviour of 42CrMo steel during heating[J]. Transactions of Materials and Heat Treatment, 2015, 36(1): 104-108. [13]Uhm Sangho, Moon Joonoh, Lee Changhee. Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe-C-Mn steels: Considering the effect of initial grain size on isothermal growth behavior[J]. ISIJ International, 2004, 44(7): 1230-1237. [14]曹云飞, 余 伟, 刘 敏, 等. 38MnSiVS非调质钢奥氏体晶粒长大模型[J]. 钢铁, 2020, 55(5): 103-108. Cao Yunfei, Yu Wei, Liu Min, et al. Austenite grain growth model of 38MnSiVS bearing microalloyed forging steel[J]. Iron and Steel, 2020, 55(5): 103-108. [15]Feltham P. Grain growth in metals[J]. Acta Metallurgica, 1957, 5(2): 97-105. [16]余永宁. 金属学原理[M]. 北京: 冶金工业出版社, 2000. [17]张 阳, 王福明, 唐郑磊, 等. SXQ500/550D钢奥氏体晶粒长大行为及其影响因素[J]. 金属热处理, 2019, 44(8): 110-118. Zhang Yang, Wang Fuming, Tang Zhenglei, et al. Austenite grain growth behavior and its influencing factors of SXQ500/550D steel[J]. Heat Treatment of Metals, 2019, 44(8): 110-118. [18]朱绍祥, 刘建荣, 王青江, 等. 高温钛合金Ti-60与IMI834的β晶粒长大规律[J]. 金属热处理, 2007, 32(11): 11-14. Zhu Shaoxiang, Liu Jianrong, Wang Qingjiang, et al. Growth behavior of β-phase grain in Ti-60 and IMI834 titanium super alloys[J]. Heat Treatment of Metals, 2007, 32(11): 11-14. |