[1]曹 勇. 2040年世界能源展望——埃克森美孚2018版预测报告解读[J]. 当代石油石化, 2018, 26(4): 8-14. Cao Yong. A brief introduction to Exxon Mobil 2018 outlook for energy to 2040[J]. Contemporary Petroleum and Petrochemical, 2018, 26(4): 8-14. [2]谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(7): 1949-1960. Xie Heping, Wu Lixin, Zheng Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society, 2019, 44(7): 1949-1960. [3]成志杰. 中国海洋战略的概念内涵与战略设计[J]. 亚太安全与海洋研究, 2017(6): 26-41. Cheng Zhijie. China's ocean strategy: Concept and strategy[J]. Asia-Pacific Security and Maritime Affairs, 2017(6): 26-41. [4]黎剑波. 激光熔焊技术在海洋钻井平台齿轮修理上的应用研究[J]. 中国修船, 2012, 25(3): 39-42. Li Jianbo. Research on application of laser fusion welding technology in gear repair of offshore drilling platform[J]. China Ship Repair, 2012, 25(3): 39-42. [5]董 凯. 激光熔覆技术在海洋自升式钻井平台升降齿轮修复中的应用实例[J]. 中国石油和化工标准与质量, 2018, 38(20): 150-151. Dong Kai. Application examples of laser cladding technology in the repair of lifting gears of marine jack-up drilling platforms[J]. China Petroleum and Chemical Standard and Quality, 2018, 38(20): 150-151. [6]马志鹏, 张誉喾, 张旭昀, 等. 35CrMo齿轮堆焊接头组织与力学性能分析[J]. 化工机械, 2017, 44(3): 271-275, 327. Ma Zhipeng, Zhang Yuku, Zhang Xuyun, et al. Analysis of microstructures and mechanical properties of 35CrMo gear overlaying joint[J]. Chemical Machinery, 2017, 44(3): 271-275, 327. [7]常晓巍. 直齿轮联合堆焊在线修复[J]. 山东工业技术, 2018(9): 12. Chang Xiaowei. On-line repair of spur gear combined surfacing welding[J]. Shandong Industrial Technology, 2018(9): 12. [8]刘 璇, 赵 刚, 李大航, 等. 热处理工艺对510 MPa级船板用钢组织及性能的影响[J]. 金属热处理, 2021, 46(1): 61-64. Liu Xuan, Zhao Gang, Li Dahang, et al. Effect of heat treatment process on microstructure and properties of 510 MPa grade ship steel[J]. Heat Treatment of Metals, 2021, 46(1): 61-64. [9]张 蕾, 李亚江, 蒋庆磊. 淬火+回火低合金高强钢焊接的研究现状[J]. 现代焊接, 2010(10): 17-21. Zhang Lei, Li Yajiang, Jiang Qinglei. Present situation of study on the welding of quenching+tempering low-alloy and high-strength steel[J]. Modern Welding Technology, 2010(10): 17-21. [10]史献营. 中碳调质钢焊接中的问题及工艺措施[J]. 新技术新工艺, 2015(7): 134-136. Shi Xianying. Welding problems and process measures of the medium carbon quenched and tempered steel[J]. New Technology and New Process, 2015(7): 134-136. [11]付海峰, 李 俏, 徐跃明, 等. 重载齿轮热处理及应用[J]. 金属热处理, 2020, 45(3): 178-185. Fu Haifeng, Li Qiao, Xu Yueming, et al. Heat treatment technologies and its application of heavy duty gears[J]. Heat Treatment of Metals, 2020, 45(3): 178-185. [12]薄国公, 王 勇, 韩 涛, 等. 焊后热处理对ASTM 4130钢焊接热影响区组织与性能的影响[J]. 金属热处理, 2011, 36(2): 83-87. Bo Guogong, Wang Yong, Han Tao, et al. Effect of post-weld heat treatment on microstructure and mechanical properties of HAZ of ASTM 4130 steel[J]. Heat Treatment of Metals, 2011, 36(2): 83-87. [13]Zhao M S, Chiew S P, Lee C K. Post weld heat treatment for high strength steel welded connections[J]. Journal of Constructional Steel Research, 2016, 122: 167-177. [14]刘庆冬, 刘文庆, 王泽民, 等. 回火马氏体中合金碳化物的3D原子探针表征Ⅰ. 形核[J]. 金属学报, 2009, 45(11): 1281-1287. Liu Qingdong, Liu Wenqing, Wang Zemin, et al. 3D atom probe characterization of alloy carbides in tempered martensite I. Nucleation[J]. Acta Metallurgica Sinica, 2009, 45(11): 1281-1287. [15]赵乃勤. 合金固态相变[M]. 长沙: 中南大学出版社, 2008. Zhao Naiqin. Solid Phase Transformation in Alloys[M]. Changsha: Central South University Press, 2008. [16]Bott I D S, Teixeira J C G. Toughness evaluation of a shielded metal arc carbon-manganese steel welded joint subjected to multiple post weld heat treatment[J]. Journal of Materials Engineering and Performance, 1999, 8(6): 683-692. [17]Li J, Zhang C, Liu Y. Influence of carbides on the high-temperature tempered martensite embrittlement of martensitic heat-resistant steels[J]. Materials Science and Engineering A, 2016, 670: 256-263. [18]文明月. 焊接热循环对Fe-Cr-Ni-Mo系高强钢组织与力学性能的影响[D]. 合肥: 中国科学技术大学, 2018. Wen Mingyue. Effect of welding thermal cycle on the microstructure and properties of Fe-Cr-Ni-Mo high strength steel[D]. Hefei: University of Science and Technology of China, 2018. |