[1]Shi X, Zeng W, Zhao Q, et al. Study on the microstructure and mechanical properties of Aermet 100 steel at the tempering temperature around 482 ℃[J]. Journal of Alloys & Compounds, 2016, 679: 184-190. [2]Lee K B, Kwon H, Yang H R, et al. Effects of alloying additions and austenitizing treatments on secondary hardening and fracture behavior for martensitic steels containing both Mo and W[J]. Metallurgical and Materials Transactions A, 2001, 32: 1659-1670. [3]汪向荣, 闫牧夫. AerMet100二次硬化过程组织和性能的研究[J]. 热处理技术与装备, 2007(5): 34-36. Wang Xiangrong, Yan Mufu. Properties and microstructure of steel AerMet100 during secondary hardening[J]. Heat Treatment Technology and Equipment, 2007(5): 34-36. [4]秦 思. AerMet100钢等离子体稀土氮碳研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. [5]冯 熙, 杨浩鹏, 吴晓春. SDC99钢离子氮碳共渗及稀土催渗[J]. 金属热处理, 2014, 39(11): 103-107. Feng Xi, Yang Haopeng, Wu Xiaochun. Plasma nitrocarburizing of SDC99 steel and rare earth catalysis[J]. Heat Treatment of Metals, 2014, 39(11): 103-107. [6]杜 威, 赵 程. 低温离子硬化处理对AISI 420不锈钢组织与性能的影响[J]. 金属热处理, 2014, 39(7): 116-120. Du Wei, Zhao Cheng. Effect of low temperature plasma hardening treatment on microstructure and properties of AISI 420 stainless steel[J]. Heat Treatment of Metals, 2014, 39(7): 116-120. [7]匡法正. 20CrMnMo风电齿轮碳氮共渗化学热处理探析[J]. 甘肃冶金, 2018, 40(1): 37-39. Kuang Fazheng. Analysis of chemical heat treatment of carbon nitrogen in 20CrMnMo wind gear[J]. Gansu Metallurgy, 2018, 40(1): 37-39. [8]张 乐, 张 津, 任青松, 等. 钢的稀土氮碳共渗技术研究进展[J]. 材料导报, 2016, 30(19): 19-25. Zhang Le, Zhang Jin, Ren Qingsong, et al. Progress in nitrocarburizing of steels with the addition of rare earth elements[J]. Materials Reports, 2016, 30(19): 19-25. [9]Evangelina De Las Heras, Ybarra G, Lamas D, et al. Plasma nitriding of 316L stainless steel in two different N2-H2 atmospheres- Influence on microstructure and corrosion resistance[J]. Surface and Coatings Technology, 2017, 313: 47-54. [10]De S R R M, Araújo Francisco Odolberto de, Costa José Alzamir Pereira da, et al. Cathodic cage nitriding of AISI 409 ferritic stainless steel with the addition of CH4[J]. Materials Research, 2012, 15(2): 260-265. [11]韦乃安, 韦春贝, 代明江, 等. 稀土含量对Ti6Al4V钛合金等离子渗氮层组织和摩擦学性能的影响[J]. 表面技术, 2020, 49(3): 148-154. Wei Nai'an, Wei Chunbei, Dai Mingjiang, et al. Effect of rare earth content on the microstructure and friction properties of Ti6Al4V alloy by plasma nitriding[J]. Surface Technology, 2020, 49(3): 148-154. [12]缪跃琼, 林 晨, 高玉新, 等. 304不锈钢低温离子渗氮及氮碳共渗处理[J]. 表面技术, 2015, 44(8): 61-64, 102. Miu Yueqiong, Lin Chen, Gao Yuxin, et al. Low-temperature plasma nitriding and plasma nitrocarburing of 304 stainless steel[J]. Surface Technology, 2015, 44(8): 61-64, 102. [13]缪 斌, 李景才, 孙 泉, 等. 离子氮碳共渗与离子渗氮复合处理对45钢组织与性能的影响[J]. 中国表面工程, 2016, 29(4): 30-34. Miao Bin, Li Jingcai, Sun Quan, et al. Effects of complex treatment of plasma nitrocarburizing and plasma nitriding on microstructure and properties of 45 steel[J]. China Surface Engineering, 2016, 29(4): 30-34. [14]沈 琳. 40CrNiMoA钢离子氮碳共渗层异常组织分析及消除[J]. 金属热处理, 2019, 44(5): 200-202. Shen Lin. Analysis and elimination of abnormal microstructure in 40CrNiMoA steel ion nitrocarburized layer[J]. Heat Treatment of Metals, 2019, 44(5): 200-202. [15]Li G M, Liang Y L, Sun H, et al. Nitriding behavior and mechanical properties of carburizing and nitriding duplex treated M50NiL steel[J]. Surface and Coatings Technology, 2019, 384: 125315. [16]王艳芳, 殷挺峰, 李双喜. 脱碳层对38CrMoAl钢离子渗氮的影响[J]. 金属热处理, 2020, 45(10): 194-198. Wang Yanfang, Yin Tingfeng, Li Shuangxi. Effect of decarbonized layer on plasma nitriding of 38CrMoAl steel[J]. Heat Treatment of Metals, 2020, 45(10): 194-198. [17]陆旭锋, 潘应君, 刘 静. 脉冲渗氮温度对38CrMoAlA钢渗氮层耐蚀性的影响[J]. 金属热处理, 2014, 39(12): 34-37. Lu Xufeng, Pan Yingjun, Liu Jing. Effect of pulse nitriding temperature on corrosion resistance of nitrided layer on 38CrMoAlA steel[J]. Heat Treatment of Metals, 2014, 39(12): 34-37. [18]孟 璇, 岳佳宏, 孔令飞, 等. 渗氮温度对42CrMo钢零件表面后氧化渗层的影响[J]. 金属热处理, 2021, 46(2): 182-184. Meng Xuan, Yue Jiahong, Kong Lingfei, et al. Effect of nitriding temperature on post-oxidating infiltrated layer of 42CrMo steel part surface[J]. Heat Treatment of Metals, 2021, 46(2): 182-184. |