[1]卢金生, 陈国民. 渗氮齿轮与渗碳齿轮的技术及经济性对比[J]. 金属热处理, 2010, 35(3): 25-28. Lu Jinsheng, Chen Guomin. Technical and economic comparison of nitrided gear and carburized gear[J]. Heat Treatment of Metals, 2010, 35(3): 25-28. [2]Gao Y K. Fatigue limit of chemical heat treated specimens and effect of shot peening[J]. Surface Engineering, 2008, 24(5): 322-326. [3]李双喜, 孙启锋, 王 鑫, 等. 38CrMoAl钢表面离子渗氮层剥落原因分析[J]. 金属热处理, 2019, 44(2): 223-226. Li Shuangxi, Sun Qifeng, Wang Xin, et al. Peeling cause analysis of ion-nitrided layer on 38CrMoAl steel surface[J]. Heat Treatment of Metals, 2019, 44(2): 223-226. [4]付海峰, 李 俏, 徐跃明. 重载齿轮热处理及应用[J]. 金属热处理, 2020, 45(3): 178-185. Fu Haifeng, Li Qiao, Xu Yueming. Heat treatment technologies and its application of heavy duty gears[J]. Heat Treatment of Metals, 2020, 45(3): 178-185. [5]Sun Y, Bell T. Plasma surface engineering of low alloy steel[J]. Materials Science and Engineering A, 1991, 140: 419-434. [6]Hamidreza Riazi, Fakhreddin Ashrafizadeh, Sayed Rahman Hosseini, et al. Influence of simultaneous aging and plasma nitriding on fatigue performance of 17-4PH stainless steel[J]. Materials Science and Engineering A, 2017, 703: 262-269. [7]梁 军, 卢艳君. 离子渗氮技术的研究和工艺[J]. 机械设计与制造, 2001, 2(1): 73-74. [8]Edenhofer B. Physical and metallurgical aspects of ion nitriding[J]. Heat Treatment of Metals, 1974, 1: 23-28. [9]季中辉. 离子氮化在汽车齿轮批量生产中的应用[J]. 制造业自动化, 2011, 33(14): 59-63. Ji Zhonghui. Application of ion nitriding in mass production of automotivegears[J]. Manufacturing Automation, 2011, 33(14): 59-63. [10]周孝重, 陈大凯. 等离子体热处理技术[M]. 北京: 机械工业出版社, 1990: 80-85. [11]Borges J N, Belmonte T, Jaoul C, et al. Study of the transition from oxidation to nitriding in a single N2-H2-O2 post-discharge[J]. Surface and Coatings Technology, 2005, 193(1-3): 132-136. [12]Rocha A, Strohaecker T, Hirsch T. Effect of different surface states before plasma nitriding on properties and machining behavior of M2 high-speed steel[J]. Surface and Coatings Technology, 2003, 165(2): 176-185. [13]刘 迨, 荀毓闽. 关于氮化层中脉状组织的探讨[J]. 金属热处理, 1979(1): 15-23. |