[1]张光钧, 吴培桂, 许佳宁, 等. 激光熔覆的应用基础研究进展[J]. 金属热处理, 2011, 36(1): 5-13. Zhang Guangjun, Wu Peigui, Xu Jianing, et al. Research progress on application of laser cladding[J]. Heat Treatment of Metals, 2011, 36(1): 5-13. [2]Gao Yali, Wang Cunshan, Yao Man, et al. The resistance to wear and corrosion of laser-cladding Al2O3 ceramic coating on Mg alloy[J]. Applied Surface Science, 2007, 253(12): 5306-5311. [3]张蕾涛, 张红星, 刘德鑫, 等. 激光熔覆复合涂层裂纹产生原因及控制研究进展[J]. 金属热处理, 2020, 45(8): 233-239. Zhang Leitao, Zhang Hongxing, Liu Dexin, et al. Research progress on causes and control of cracks in laser cladding composite coating[J]. Heat Treatment of Metals, 2020, 45(8): 233-239. [4]Guo Chun, Zhou Jiansong, Chen Jianmin, et al. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings[J]. Wear, 2011, 270(7): 492-498. [5]Zhuang Qiaoqiao, Zhang Peilei, Li Mingchuan, et al. Microstructure, wear resistance and oxidation behavior of Ni-Ti-Si coatings fabricated on Ti6Al4V by laser cladding[J]. Materials, 2017, 10(11): 1248. [6]徐滨士, 刘世参. 表面工程新技术[M]. 北京: 国防工业出版社, 2002. [7]Zhou S, Xu Y, Liao B, et al. Effect of laser remelting on microstructure and properties of WC reinforced Fe-based amorphous composite coatings by laser cladding[J]. Optics & Laser Technology, 2018, 103: 8-16. [8]Sourabh B, Alavi S, Sandip H. Effect of laser remelting and simultaneous application of ultrasonic vibrations during laser melting on the microstructural and tribological properties of laser clad Al-SiC composites[J]. Journal of Composites Science, 2017, 1(2): 13. [9]Cai Zhaobing, Cui Xiufang, Liu Zhe, et al. Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing[J]. Optics & Laser Technology, 2018, 99: 276-281. [10]纪秀林, 顾 鹏, 王振松, 等. 激光重熔对电弧喷涂含非晶相铁基涂层性能的影响[J]. 表面技术, 2019, 48(4): 68-74. Ji Xiulin, Gu Peng, Wang Zhensong, et al. Effect of laser remelting on slurry erosion and corrosion properties of arc-sprayed Fe-based amorphous-containing coatings[J]. Surface Technology, 2019, 48(4): 68-74. [11]Dai Qiulin, Luo Canbin, You Fangyi. Crack restraining methods and their effects on the microstructures and properties of laser cladded WC/Fe coatings[J]. Materials, 2018, 11: 2541. [12]Liu Hongxi, Xu Qian, Wang Chuanqi, et al. Corrosion and wear behavior of Ni60CuMoW coatings fabricated by combination of laser cladding and mechanical vibration processing[J]. Journal of Alloys & Compounds, 2015, 621: 357-363. [13]Fernandez M R, Garcia A, Cuetos J M, et al. Effect of actual WC content on the reciprocating wear of a laser cladding NiCrBSi alloy reinforced with WC[J]. Wear, 2015, 324-325: 80-89. [14]李 泽, 纪秀林, 郎子樊, 等. 激光重熔对Fe基非晶合金涂层抗冲蚀性能的影响[J]. 金属热处理, 2019, 44(5): 117-123. Li Ze, Ji Xiulin, Lang Zifan, et al. Effect of laser remelting on erosion resistance of Fe-based amorphous alloy coating[J]. Heat Treatment of Metals, 2019, 44(5): 117-123. [15]钟敏霖, 刘文今, 任家烈. NiCrSiB合金高功率激光送粉熔覆裂纹形成的敏感因素[J]. 应用激光, 2000(5): 193-197, 224. Zhong Minlin, Liu Wenjin, Ren Jialie. Sensitive factors of crack formation in high power laser feeding of NiCrSiB alloy[J]. Applied Laser, 2000(5): 193-197, 224. [16]付福兴, 畅庚榕, 赵小侠, 等. 激光光斑直径对熔覆层裂纹的影响[J]. 激光与光电子学进展, 2015, 52(3): 178-181. Fu Fuxing, Chang Gengrong, Zhao Xiaoxia, et al. Influence of laser spot diameter on cladding layer cracking[J]. Laser and Optoelectronics Progress, 2015, 52(3): 178-181. [17]Hoadley A F A, Rappaz M. A thermal model of laser cladding by powder injection[J]. Metallurgical Transactions B, 1992, 23(5): 631-642. [18]Zhang Peilei, Yan Hua, Yao Chengwu, et al. Synthesis of Fe-Ni-B-Si-Nb amorphous and crystalline composite coatings by laser cladding and remelting[J]. Surface & Coatings Technology, 2011, 206(6): 1229-1236. [19]Liu Yan, Wu Ying, Ma Yuanming, et al. High temperature wear performance of laser cladding Co06 coating on high-speed train brake disc[J]. Applied Surface Science, 2019, 481: 761-766. [20]Gan Zhengtao, Yu Gang, He Xuli, et al. Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel[J]. International Journal of Heat & Mass Transfer, 2017, 104: 28-38. [21]Liu Shiwen, Zhu Haihong, Peng Ganyong, et al. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis[J]. Materials & Design, 2018, 142: 319-328. [22]Liu Huaming, Li Mingbo, Qin Xunpeng, et al. Numerical simulation and experimental analysis of wide-beam laser cladding[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100: 237-249. [23]Ma Pengchao, Wu Yu, Zhang Pengju, et al. Solidification prediction of laser cladding 316L by the finite element simulation[J]. International Journal of Advanced Manufacturing Technology, 2019, 103: 957-969. [24]Li Ruifeng, Li Zhuguo, Huang Jian, et al. Dilution effect on the formation of amorphous phase in the laser cladded Ni-Fe-B-Si-Nb coatings after laser remelting process[J]. Applied Surface Science, 2012, 258(20): 7956-7961. [25]Fazliana F, Aqida S N, Ismail I. Effect of tungsten carbide partial dissolution on the microstructure evolution of a laser clad surface[J]. Optics & Laser Technology, 2020, 121: 105789. |