[1]Liu W S, Duan Y T, Ma Y Z, et al. Surface characterization of plasma rotating electrode atomized 30CrMnSiNi2A steel powder[J]. Applied Surface Science, 2020, 528: 147004. [2]Chen F R, Huo L X, Zhang Y F, et al. Effects of electron beam local post-weld heat-treatment on the microstructure and properties of 30CrMnSiNi2A steel welded joints[J]. Journal of Materials Processing Tech, 2002, 129(1-3): 412-417. [3]Smurov I. Laser cladding and laser assisted direct manufacturing[J]. Surface and Coatings Technology, 2008, 202(18): 4496-4502. [4]Zhong C L, Kittel J, Gasser A, et al. Study of nickel-based super-alloys Inconel 718 and Inconel 625 in high-deposition-rate laser metal deposition[J]. Optics and Laser Technology, 2019, 109: 352-360. [5]Sun B B, Zhang X J, Li N. Study on laser cladding process and properties of 30CrMnSiNi2A ultra-high-strength steel[J]. Welding Technology, 2016, 45(3): 23-25. [6]Zhang Z Q, Cheng Z H, Cao Q, et al. Repairing of 30CrMnSiNi2A high strength steel by laser cladding[J]. Equipment Environmental Engineering, 2016, 13(1): 62-67. [7]Marleen Rombouts, Rosita Persoons, Eric Geerinckx, et al. Development and characterization of nickel based tungsten carbide laser cladded coatings[J]. Physics Procedia, 2010, 5: 333-339. [8]Zhang J Q, Lei J B, Gu Z J, et al. Effect of WC-12Co content on wear and electrochemical corrosion properties of Ni-Cu/WC-12Co composite coatings deposited by laser cladding[J]. Surface and Coatings Technology, 2020, 393: 125807. [9]Fernández M R, García A, Cuetos J M, et al. Effect of actual WC content on the reciprocating wear of a laser cladding NiCrBSi alloy reinforced with WC[J]. Wear, 2015, 324-325: 80-89. [10]刘新乾, 周后明, 赵振宇, 等. TiB2含量对激光熔覆钴基涂层组织和性能的影响[J]. 金属热处理, 2018, 43(10): 168-172. Liu Xinqian, Zhou Houming, Zhao Zhenyu, et al. Effect of TiB2 content on microstructure and properties of laser clad Co-based coating[J]. Heat Treatment of Metals, 2018, 43(10): 168-172. [11]Kamdi Z, Shipway P H, Voisey K T, et al. Abrasive wear behaviour of conventional and large-particle tungsten carbide-based cermet coatings as a function of abrasive size and type[J]. Wear, 2011, 271: 1264-1272. [12]Liu Yang, Lu Yang, Yuan Lihua, et al. A study on friction and wear of aluminium bronzes in different media[J]. Tribology, 2007, 27(2): 126-131. [13]He X, Song R G, Kong D J. Effects of TiC on the microstructure and properties of TiC/TiAl composite coating prepared by laser cladding[J]. Optics and Laser Technology, 2019, 112: 339-348. [14]Florian Mansfeld. Tafel slopes and corrosion rates from polarization resistance measurements[J]. Corrosion, 1973, 29 (10): 397-402. [15]赵 宇, 宋振明, 金剑波, 等. 激光选区熔化成形Ti-5%TiN复合材料在Hank溶液中的电化学腐蚀性能[J]. 中国激光, 2019, 46(9): 112-120. Zhao Yu, Song Zhenming, Jin Jianbo, et al. Electrochemical corrosion properties of Ti-5%TiN composites formed by selective laser melting in Hank's solution[J]. Chinese Journal of Lasers, 2019, 46(9): 112-120. [16]卢文欢, 吴玉萍, 张晶晶, 等. 等离子喷涂Fe基合金涂层的耐蚀性[J]. 金属热处理, 2010, 35(8): 33-37. Lu Wenhuan, Wu Yuping, Zhang Jingjing, et al. Corrosion resistance of Fe-based alloy coating by plasma spraying[J]. Heat Treatment of Metals, 2010, 35(8): 33-37. |