[1]Liu Yongchang, Shi Lei, Liu Chenxi. Effect of step quenching on microstructures and mechanical properties of HSLA steel[J]. Materials Science and Engineering A, 2016, 675: 371-378. [2]Liu Dongsheng, Li Qingliang, Emi Toshihiko. Microstructure and mechanical properties in hot-rolled extra high-yield-strength steel plates for offshore structure and shipbuilding[J]. Metallurgical and Materials Transactions A, 2010, 42(5): 1349-1361. [3]Xi Xiaohui, Wang Jinliang, Li Xing. The role of intercritical annealing in enhancing low-temperature toughness of Fe-C-Mn-Ni-Cu structural steel[J]. Metallurgical and Materials Transactions A, 2019, 50(6): 2912-2921. [4]Thompson S W. Microstructural characterization of an as-quenched HSLA-100 plate steel via transmission electron microscopy[J]. Materials Characterization, 2013, 77: 89-98. [5]Mujahid Mohammad, Lis A K, Garcia C. HSLA steels: Microstructure and properties[J]. Key Engineering Materials, 1993, 84: 209-236. [6]Takahashi J, Kawakami K, Kobayashi Y. Consideration of particle-strengthening mechanism of copper-precipitation-strengthened steels by atom probe tomography analysis[J]. Materials Science and Engineering A, 2012, 535: 144-152. [7]Su Hang, Luo Xiaobing, Yang Caifu. Effects of cu on corrosion resistance of low alloyed steels in acid chloride media[J]. Journal of Iron and Steel Research, International, 2014, 21(6): 619-624. [8]Hwang Guen Chul, Lee Sunghak, Yoo Jang Yong. Effect of direct quenching on microstructure and mechanical properties of copper-bearing high-strength alloy steels[J]. Materials Science and Engineering A, 1998, 252(2): 256-268. [9]Yoo J, Choo W, Park T. Microstructures and age hardening characteristics of direct quenched Cu bearing HSLA steel[J]. ISIJ International, 1995, 35: 1034-1040. [10]Dhua S K, Sen S K. Effect of direct quenching on the microstructure and mechanical properties of the lean-chemistry HSLA-100 steel plates[J]. Materials Science and Engineering A, 2011, 528(21): 6356-6365. [11]Zhao Yu, Xu Songsong, Li Junpeng. Enhancement of low temperature toughness of nanoprecipitates strengthened ferritic steel by delamination structure[J]. Materials Science and Engineering A, 2017, 691: 162-167. [12]杨才福, 张永权, 王瑞珍. 钒钢冶金原理与应用[M]. 北京: 冶金工业出版社, 2012: 51-76. Yang Caifu, Zhang Yongquan, Wang Ruizhen. Metallurgical Principle and Application of Vanadium Steel[M]. Beijing: Metallurgical Industry Press, 2012: 51-76. [13]Higginson R L, Sellars C M. Worked Examples in Quantitative Metallography[M]. London: Maney, 2003: 31-46. [14]Jain Divya, Isheim Dieter, Hunter Allen. Multicomponent high-strength low-alloy steel precipitation-strengthened by sub-nanometric Cu precipitates and M2C carbides[J]. Metallurgical and Materials Transactions A, 2016, 47(8): 1-13. [15]Thompson S W. Fine-scale structural features of intercritically aged HSLA-100 plate steel and their influence on yield strength and low-temperature impact toughness[J]. Materials Characterization, 2018, 136: 425-434. [16]雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006: 1-204. Yong Qilong. Second Phases in Structural Steels[M]. Beijing: Metallurgical Industry Press, 2006: 1-204. [17]Kao A S, Kuhn H A, Richmond O. Tensile fracture and fractographic analysis of 1045 spheroidized steel under hydrostatic pressure[J]. Journal of Materials Research, 1990, 5(1): 83-91. [18]Jiang Bo, Wu Meng, Zhang Mai. Microstructural characterization, strengthening and toughening mechanisms of a quenched and tempered steel: Effect of heat treatment parameters[J]. Materials Science and Engineering A, 2017, 707: 306-314. [19]赵乃勤. 合金固态相变[M]. 长沙: 中南大学出版社, 2008: 255-265. Zhao Naiqin. Solid Phase Transformation of Alloys[M]. Changsha: Central South University Press, 2008: 255-265. [20]Chilton J M, Kelly P M. The strength of ferrous martensite[J]. Acta Metallurgica, 1968, 16(5): 637-656. [21]张正延, 李昭东, 雍岐龙. 升温过程中Nb和Nb-Mo微合金化钢中碳化物的析出行为研究[J]. 金属学报, 2015, 51(3): 315-324. Zhang Zhengyan, Li Zhaodong, Yong Qilong. Precipitation behavior of carbide during heating process in Nb and Nb-Mo micro-alloyed steels[J]. Acta Metallurgica Sinica, 2015, 51(3): 315-324. [22]余永宁. 金属学原理[M]. 2版. 北京: 冶金工业出版社, 2013: 907-933. Yu Yongning. Principles of Metals[M]. Second Edition. Beijing: Metallurgical Industry Press, 2013: 907-933. [23]Yan Peng, Liu Zhengdong, Bao Hansheng. Effect of tempering temperature on the toughness of 9Cr-3W-3Co martensitic heat resistant steel[J]. Materials and Design, 2014, 54: 874-879. [24]罗小兵, 杨才福, 苏 航. 时效温度对HSLA高强船体钢组织和性能的影响[J]. 材料热处理学报, 2011, 32(6): 73-77. Luo Xiaobing, Yang Caifu, Su Hang. Effect of aging temperature on microstructure and properties of HSLA ship-hull steel[J]. Transactions of Materials and Heat Treatment, 2011, 32(6): 73-77. [25]余锡模, 赵世金. 含Cu和Ni低碳高强度钢等时回火析出富Cu相的研究[J]. 金属学报, 2013, 49(5): 569-575. Yu Ximo, Zhao Shijin. Study on Cu precipitate of the low C high strength steel containing Cu and Ni during isochronal tempering[J]. Acta Metallurgica Sinica, 2013, 49(5): 569-575. [26]Li Zhentuan, Chai Feng, Yang Li. Mechanical properties and nanoparticles precipitation behavior of multi-component ultra high strength steel[J]. Materials and Design, 2020, 191: 108637. [27]Saastamoinen A, Kaijalainen A, Porter D. The effect of finish rolling temperature and tempering on the microstructure, mechanical properties and dislocation density of direct-quenched steel[J]. Materials Characterization, 2018, 139: 1-10. [28]张正延, 柴 锋, 罗小兵. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791. Zhang Zhengyan, Chai Feng, Luo Xiaobing. The strengthening mechanism of Cu bearing high strength steel as-quenched and tempered and Cu precipitation behavior in steel[J]. Acta Metallurgica Sinica, 2019, 55(6): 783-791. |