[1]蓝秀琼, 陈建华. 回火温度对PRO500超高强钢的组织与冲击断裂行为的影响[J]. 材料热处理学报, 2020, 41(8): 80-86. Lan Xiuqiong, Chen Jianhua. Effect of tempering temperature on microstructure and impact fracture behavior of PRO500 ultra-high strength steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(8): 80-86. [2]冯祥利, 王 磊, 刘 杨. 焊接工艺对Q460钢CO2气体保护焊接头冲击断裂行为的影响[J]. 材料热处理学报, 2018, 39(3): 159-166. Feng Xiangli, Wang Lei, Liu Yang. Effect of welding technology on impact fracture behavior of Q460 steel CO2 gas shielded arc welding joints[J]. Transactions of Materials and Heat Treatment, 2018, 39(3): 159-166. [3]杨跃辉, 张晓娟, 苑少强. 回转奥氏体对9Ni钢低温断裂机制的影响[J]. 材料热处理学报, 2014, 35(9): 101-105. Yang Yuehui, Zhang Xiaojuan, Yuan Shaoqiang. Effect of reversed austenite on low temperature fracture mechanism of 9Ni steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(9): 101-105. [4]潘建华. 冲击载荷作用下压力容器用金属材料动态断裂行为的研究[D]. 合肥: 中国科学技术大学, 2019. Pan Jianhua. Dynamic fracture behavior of pressure vessel metal materials under impact loads[D]. Hefei: University of Science and Technology of China, 2019. [5]李小陶. 示波冲击曲线浅析[J]. 理化检验(物理分册), 2020, 56(10): 18-21. Li Xiaotao. Analysis of oscillographic impact curve[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2020, 56(10): 18-21. [6]白 光, 曲迎东, 李荣德, 等. 7075合金低温冲击过程中的能量分布和示波曲线分析[J]. 特种铸造及有色合金, 2019, 39(7): 800-802. Bai Guang, Qu Yingdong, Li Rongde, et al. Analysis of energy distribution and oscillographic curve of 7075 alloy during low temperature impact[J]. Special Casting and Nonferrous Alloys, 2019, 39(7): 800-802. [7]Rautioaho R, Karjalainen P. Stress response of barkhausen noise and coercive force in 9Ni steel[J]. Journal of Magnetism and Magnetic Materials, 1987, 68: 321-327. [8]李华瑞. 材料X射线衍射分析使用方法[M]. 北京: 冶金工业出版社, 1994: 39-48. [9]Yan N, Di H S, Misra R D K, et al. Enhancing austenite stability in a new medium-Mn steel by combining deep cryogenic treatment and intercritical annealing: An experimental and theoretical study[J]. Materials Science and Engineering A, 2019, 753: 11-21. [10]杨跃辉. 9Ni钢断裂过程中的裂纹扩展行为[J]. 金属热处理, 2015, 40(12): 177-180. Yang Yuehui. Propagation behavior of crack in 9Ni steel during fracture process[J]. Heat Treatment of Metals, 2015, 40(12): 177-180. [11]李会鹏, 熊 毅, 路 妍, 等. 应变速率对低温拉伸316LN奥氏体不锈钢微观组织和力学性能的影响[J]. 材料研究学报, 2018, 32(2): 105-111. Li Huipeng, Xiong Yi, Lu Yan, et al. Effect of strain rate on microstructure evolution and mechanical property of 316LN austenitic stainless steel at cryogenic temperature[J]. Chinese Journal of Materials Research, 2018, 32(2): 105-111. [12]郭 宁, 王 通, 徐 虹, 等. TRIP效应主要影响因素的研究[J]. 汽车工艺与材料, 2016(2): 45-49. Guo Ning, Wang Tong, Xu Hong, et al. A study on the main influencing factors of TRIP effect[J]. Automobile Technology and Material, 2016(2): 45-49. [13]卫品官, 黄 澍, 周 磊, 等. 应变率对高强度TRIP力学性能的影响[J]. 热加工工艺, 2010, 39(16): 49-51. Wei Pinguan, Huang Zhu, Zhou Lei, et al. Effect of strain rate on mechanical properties of high strength TRIP steel[J]. Hot Working Technology, 2010, 39(16): 49-51. [14]He Zhongping, He Yanlin, Ling Yuntao, et al. Effect of strain rate on deformation behavior of TRIP steels[J]. Journal of Materials Processing Technology, 2012, 212(10): 2141-2147. [15]Huh Hoon, Kin Seok-Bong, Song Jung-Han, et al. Dynamic tensile characteristics of TRIP-type and DP-type steels for an auto-body[J]. International Journal of Mechanical Science, 2008, 50: 918-931. [16]阳 锋, 罗海文, 董 瀚. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究[J]. 金属学报, 2018, 54(6): 859-867. Yang Feng, Luo Haiwen, Dong Han. Effects of intercritical annealing temperature on the tensile behavior of cold rolled 7Mn steel and the constitutive modeling[J]. Acta Metallurgica Sinica, 2018, 54(6): 859-867. |