[1]Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials[J]. Progress in Materials Science, 2018, 94: 462-540. [2]Afifeh M, Hosseinipour S J, Jamaati R. High-strength and high-conductivity nanograined copper fabricated by partial homogenization and asymmetric rolling[J]. Materials Science and Engineering A, 2019, 768: 138451. [3]Afifeh M, Hosseinipour S J, Jamaati R. Nanostructured copper matrix composite with extraordinary strength and high electrical conductivity produced by asymmetric cryorolling[J]. Materials Science and Engineering A, 2019, 763: 138146. [4]郭 衡, 肖小亭, 陈名涛, 等. 不同退火温度对纯铜三通管胀形性能影响[J]. 金属热处理, 2019, 44(8): 200-204. Guo Heng, Xiao Xiaoting, Chen Mingtao, et al. Effect of annealing temperature on bulging property of copper tubes[J]. Heat Treatment of Metals, 2019, 44(8): 200-204. [5]Li Cong, Wang Xianhui, Li Bo, et al. Effect of cold rolling and aging treatment on the microstructure andproperties of Cu-3Ti-2Mg alloy[J]. Journal of Alloys and Compounds, 2019, 818(11/12): 152915. [6]胡庚祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 3版. 上海: 上海交通大学出版社, 2010. [7]吴 恒, 张 鸿, 吕佳峰, 等. 连续纤维晶纯铜高温短时退火的组织和性能[J]. 材料热处理学报, 2017, 38(1): 31-36. Wu Heng, Zhang Hong, Lü Jiafeng, et al. Microstructure and properties of pure copper with continuous fibrous crystal after annealing at high temperature for short time[J]. Transactions of Materials and Heat Treatment, 2017, 38(1): 31-36. [8]Lu Lei, Shen Yongfeng, Chen Xianhua, et al. Ultrahigh strength and high electrical conductive in copper[J]. Science, 2004, 304(5669): 422-426. [9]Mao Z N, Gu R C, Liu F, et al. Effect of equal channel angular pressing on the thermal-annealing-induced microstructure and texture evolution of cold-rolled copper[J]. Materials Science and Engineering A, 2016, 674: 186-192. [10]Zepeda-ruiz L A, Stukowski A, Oppelstrup T, et al. Atomistic insights into metal hardening[J]. Nature Materials, 2020, 20(3): 315-320. [11]Field D P, Bradford L T, Nowell M M, et al. The role of annealing twins during recrystallization of Cu[J]. Acta Materialia, 2007(55): 4233-4241. [12]束德林. 工程材料力学性能[M]. 3版. 合肥: 合肥工业大学出版社, 2016. [13]Huang X, Kamikawa N, Huang N. Strengthening mechanisms in nanostructured aluminum[J]. Materials Science and Engineering A, 2006, 483: 102-104. [14]李小红, 姜庆伟, 李 敏, 等. 亚稳态ARB-Cu的微观结构与力学行为对退火工艺的响应关系[J]. 金属热处理, 2021, 46(2): 37-44. Li Xiaohong, Jiang Qingwei, Li Min, et al. Response of microstructure and mechanical behavior of metastable ARB-Cu to annealing process[J]. Heat Treatment of Metals, 2021, 46(2): 37-44. [15]陈善华, 吴 杰, 管登高, 等. 金属材料晶界工程研究进展[J]. 金属热处理, 2006, 31(3): 1-6. Chen Shanhua, Wu Jie, Guan Denggao, et al. Review on grain boundary engineering of metallic materials[J]. Heat Treatment of Metals, 2006, 31(3): 1-6. [16]Chen X H, Lu L, Lu K. Electrical resistivity of ultrafinegrained copper with nanoscale growth twins[J]. Journal of Applied Physics, 2007, 102(8): 0837081-0837088. [17]Hou J P, Li R, Wang Q, et al. Three principles for preparing Al wire with high strength and high electrical conductivity[J]. Journal of Materials Science and Technology, 2019, 35(5): 745-751. [18]陈先华. 孪晶对Cu的力学和电学性能影响的研究进展[J]. 材料工程, 2011(9): 87-91. Chen Xianhua. Research progress in influence of twins on mechanical and electrical properties of Cu[J]. Materials Engineering, 2011(9): 87-91. [19]申勇峰, 卢 磊, 陈先华, 等. 纳米孪晶纯铜的强度和导电性[J]. 物理, 2005, 34(5): 344-347. Shen Yongfeng, Lu Lei, Chen Xianhua, et al. Ultrahigh strength and high electrical conductivity of copper with nanometer sized twins[J]. Physics, 2005, 34(5): 344-347. |