[1]Il'ina V P, Troitskaya V A. Effect of low-temperature quenching on the microstructure and capacity for corrosion cracking of steel 03Kh11N10M2T-VD[J]. Metal Science and Heat Treatment, 2000, 42(2): 53-56. [2]杨卓越, 高 齐, 丁雅莉, 等. 低温固溶处理改善马氏体时效钢韧性技术研究[J]. 新技术新工艺, 2018(5): 1-3. Yang Zhuoyue, Gao Qi, Ding Yali, et al. Investigation on the technology for improving toughness of maraging steel by lowering solution treatment temperature[J]. New Technology and New Process, 2018(5): 1-3. [3]邱旭扬帆, 杨卓越, 丁雅莉. 残留/逆转变奥氏体对改善高强度不锈钢-196 ℃超低温冲击性能的影响[J]. 金属热处理, 2021, 46(5): 71-74. Qiu Xuyangfan, Yang Zhuoyue, Ding Yali. Influence of residual/reverse transformation austenite on improving the impact properties of high strength stainless steel at -196 ℃ ultra-low temperature[J]. Heat Treatment of Metals, 2021, 46(5): 71-74. [4]苏文文, 杨卓越, 丁雅丽. 重复固溶处理对超低温用铸造马氏体时效不锈钢性能的影响[J]. 金属热处理, 2014, 39(4): 15-18. Su Wenwen, Yang Zhuoyue, Ding Yali. Effect of repeated solution treatment on properties of cast maraging stainless steel for ultra-low temperature[J]. Heat Treatment of Metals, 2014, 39(4): 15-18. [5]Tarasenko L V, Shal′kevich A B. Phase composition and hardening of steels of the Fe-Cr-Ni-Co-Mo system with martensite-austenite structure[J]. Metal Science and Heat Treatment, 2007, 49(3/4): 188-193. [6]Anoop C R, Prakash A, Murty S V S N, et al. Origin of low temperature toughness in a 12Cr-10Ni martensitic precipitation hardenable stainless steel[J]. Materials Science and Engineering A, 2018, 709: 1-8. [7]Maki T, Morimoto H, Tamura I. Recrystallization of reversed austenite and subsequent martensitic transformation in 18%Ni maraging steel[J]. Transactions of the Iron and Steel Institute of Japan, 1980, 20(10): 700-706. [8]Naksda N, Tsuchiyama T, Takaki S, et al. Variant selection of reversed austenite in lath martensite[J]. ISIJ International, 2007, 47 (10): 1527-1532. [9]Jin S, Hwang S K, Morris J W. The effect of grain size and retained austenite on the ductile-brittle transition of a titanium-gettered iron alloy[J]. Metallurgical Transactions A, 1975, 6(9): 1721-1726. [10]方 萍, 苏 杰, 赵晓丽, 等. 奥氏体化温度对30Cr4Si2NiMoNb超高强度钢强韧性的影响[J]. 金属热处理, 2013, 38(5): 88-91. Fang Ping, Su Jie, Zhao Xiaoli, et al. The effect of austenitizing temperature on the strength and toughness of 30Cr4Si2NiMoNb ultra-high-strength steel[J]. Heat Treatment of Metals, 2013, 38(5): 88-91. [11]Naksda N, Fukagawa R, Tsuchiyama T, et al. Inheritance of dislocations and crystallographic texture during martensitic reversion into austenite[J]. ISIJ International, 2013, 53(7): 1286-1288. [12]文志旻, 苏 杰, 杨卓越, 等. 预处理温度对00Cr12Ni10MoTi马氏体不锈钢强度的影响[J]. 钢铁, 2011, 46(9): 78-81. Wen Zhimin, Su Jie, Yang Zhuoyue, et al. Effect of pre-treatment temperature on the strength of 00Cr12Ni10MoTi maraging stainless steel[J]. Iron and Steel, 2011, 46(9): 78-81. [13]葛 鹏, 杨卓越, 丁雅莉. 预处理对低温用高强度钢00Cr12Ni10MoTi力学性能的影响[J]. 金属热处理, 2013, 38(4): 60-63. Ge Peng, Yang Zhuoyue, Ding Yali. Effect of pre-heat treatment on mechanical properties of high-strength stainless steel 00Cr12Ni10MoTi for cryogenic applications[J]. Heat Treatment of Metals, 2013, 38(4): 60-63. |