[1]Miller R A. Thermal barrier coatings for aircraft engines: History and directions[J]. Journal of Thermal Spray Technology, 1997, 6(1): 35-42. [2]Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566): 280-284. [3]Jian C Y. Study on evaluation method of ceramic coating system for gas turbine rotator blades[D]. Sendai-shi: Tohoku University, 1996. [4]Che C, Wu G Q, Qi H Y, et al. Uneven growth of thermally grown oxide and stress distribution in plasma-sprayed thermal barrier coatings[J]. Surface and Coatings Technology, 2009, 203(20): 3088-3091. [5]Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(5): 505-553. [6]Trunova O, Beck T, Herzog R, et al. Damage mechanisms and lifetime behavior of plasma sprayed thermal barrier coating systems for gas turbines-Part I: Experiments[J]. Surface and Coatings Technology, 2008, 202(20): 5027-5032. [7]Tolpygo V K, Clarke D R, Murphy K S. Evaluation of interface degradation during cyclic oxidation of EB-PVD thermal barrier coatings and correlation with TGO luminescence[J]. Surface and Coatings Technology, 2004, 188(1): 62-70. [8]Ahrens M, Vaβen R, Stöver D. Stress distributions in plasma-sprayed thermal barrier coatings as a function of interface roughness and oxide scale thickness[J]. Surface and Coatings Technology, 2002, 161(1): 26-35. [9]Ranjbar-Far M, Absi J, Mariaux G, et al. Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method[J]. Materials and Design, 2010, 31(2): 772-781. [10]Bednarz P. Finite element simulation of stress evolution in thermal barrier coating systems[D]. Aachen: Aachen Technical University, 2006. [11]Zhu J G, Chen W, Xie H M. Simulation of residual stresses and their effects on thermal barrier coating systems using finite element method[J]. Science China (Physics, Mechanics and Astronomy), 2015, 58(3): 1-10. [12]Yu Q M, Zhou H L, Wang L B. Influences of interface morphology and thermally grown oxide thickness on residual stress distribution in thermal barrier coating system[J]. Ceramics International, 2016, 42(7): 8338-8350. [13]张治彪. 基于真实TGO界面形貌的热障涂层热应力及界面失效有限元分析[D]. 湘潭: 湘潭大学, 2016. [14]Hutchinson J W. Delamination of compressed films on curved substrates[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(9): 1847-1864. [15]Hsueh C H, Fuller E R. Analytical modeling of oxide thickness effects on residual stresses in thermal barrier coatings[J]. Scripta Materialia, 2000, 42(8): 781-787. [16]Limarga A M, Widjaja S, Yip T H, et al. Modeling of the effect of Al2O3 interlayer on residual stress due to oxide scale in thermal barrier coatings[J]. Surface and Coatings Technology, 2002, 153(1): 16-24. |