[1]Takagi Ken-ichi. Development and application of high strength ternary boride base cermets[J]. Journal of Solid State Chemistry, 2006, 179: 2809-2818. [2]Lakeland, K D, Graham E, Heron A. Mechanical properties of microstructures of a series of FCB alloys [D]. Brisbane: The University of Queensland, 1992: 1-13. [3]Shen Yupeng, Huang Zhifu, Xiao Peng, et al. Sintering mechanism, microstructure evolution and nanomechanical properties of Cr-added Mo2Fe2B-based cetmets[J]. Ceramics International, 2020, 46: 1582-1591. [4]Zhang Jiajie, Zheng Yong, Chen Jixin, et al. Microstructure and mechanical properties of Mo2Fe2B-based cermets prepared by two-step sintering technique[J]. International Journal of Refractory Metals and Hard Materials, 2018, 72: 56-62. [5]李 阳, 余海洲, 赵 迪, 等. 热等静压对Mo2FeB2基金属陶瓷的组织及性能的影响[J]. 金属热处理, 2017, 42(5): 112-116. Li Yang, Yu Haizhou, Zhao Di, et al. Effect of HIP on microstructure and properties of Mo2FeB2 based cermets[J]. Heat Treatment of Metals, 2017, 42(5): 112-116. [6]Ren Xianhu, Yu Liming, Liu Yongchang, et al. Effect of extra boron addition on the liquid-state sintering process and properties of hard Mo2Fe2B-based cetmets[J]. International Journal of Refractory Metals and Hard Materials, 2016, 61: 207-214. [7]Zhang Jiajie, Zheng Yong, Zhou Wei, et al. Effects of Cr content on the microstructure and mechanical properties of Mo2Fe2B-based cermets prepared via vacuum sintering[J]. Vacuum, 2018, 155: 509-513. [8]胡 兵, 潘应君, 王晴芳, 等. 添加Cr、V元素对Mo2FeB2基金属陶瓷的组织及性能的影响[J]. 金属热处理, 2011, 36(6): 29-32. Hu Bing, Pan Yingjun, Wang Qingfang, et al. Influence of addition element Cr and V on microstructure and properties of Mo2FeB2 based cermet[J]. Heat Treatment of Metals, 2011, 36(6): 29-32. [9]闫东东, 余海洲, 刘文俊. Ni添加剂对Mo2FeB2基金属陶瓷的显微组织和力学性能的影响[J]. 硬质合金, 2020, 37(1): 38-42. Yan Dongdong, Yu Haizhou, Liu Wenjun. Influence of Ni addition on microstructure and mechanical properties of Mo2FeB2 based cermets[J]. Cemented Carbide, 2020, 37(1): 38-42. [10]Wei Xiang, Chen Zhiguo, Zhong Jue, et al. Feasibility of preparing Mo2FeB2-based cermet coating by electrospark deposition on high speed steel[J]. Surface and Coatings Technology, 2016, 296: 58-64. [11]Jin Jun, Sun Junsheng, Wang Guangle. Effect of Mo content on microstructure and wear resistance of Mo-Fe-B claddings[J]. International Journal of Refractory Metals and Hard Materials, 2019, 81: 233-241. [12]李文虎, 刘福田. WC对原位合成Mo2FeB2烧结及组织性能的影响[J]. 粉末冶金技术, 2009, 27(3): 166-169. Li Wenhu, Liu Futian. Effect of WC content on sintering process and structure properties for in situ sintering synthesis of Mo2FeB2[J]. Powder Metallurgy Technology, 2009, 27(3): 166-169. [13]李文虎. Mo/TiC含量对Mo2FeB2-TiC复相金属陶瓷组织和性能的影响[J]. 金属热处理, 2019, 44(8): 73-77. Li Wenhu. Effect of Mo/TiC content on microstructure and properties of Mo2FeB2-TiC multiphase cermets[J]. Heat Treatment of Metals, 2019, 44(8): 73-77. [14]承 新. Mo2FeB2基金属陶瓷复合材料的研究[D]. 南京: 南京航空航天大学, 2008. Cheng Xin. Research on a composite of Mo2FeB2 based cermet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008. [15]Sireli G K, Bora A S, Timur S. Evaluating the mechanical behavior of electrochemically borided low-carbon steel[J]. Surface and Coatings Technology, 2019, 381: 125177. [16]Türkmen, Yalamaç E, Keddam M. Investigation of tribological behaviour and diffusion model of Fe2B layer formed by pack-boriding on SAE 1020 steel [J]. Surface and Coatings Technology, 2019, 377: 124888-124899. [17]Bartkowska A. Production and properties of FeB-Fe2B-Fe3(B, C) surface layers formed on tool steel using combination of diffusion and laser processing[J]. Coatings, 2020, 10(11): 1130-1134. [18]Bataev I A, Bataev A A, Golkovski M G, et al. Structure of surface layers produced by non-vacuum electron beam boriding[J]. Applied Surface Science, 2013, 284: 472-481. [19]Yi Y, Li Q, Huang X, et al. Influence mechanism of K2SO4 addition on microstructure, mechanical properties and abrasion resistance of Fe-2wt%B alloy[J]. Materials and Design, 2021, 197: 109164. [20]Ren X Y, Fu H G, Xing J D, et al. Effect of boron concentration on microstructures and properties of Fe-B-C alloy steel[J]. Journal of Materials Research, 2017, 32(16): 3078-3088. [21]Nowacki J, Leszek Klimek L. Structure and properties of Fe-Fe2B cermets[J]. Journal of Materials Science, 1992, 27: 3651-3656. [22]魏 祥, 陈志国, 黄奇胜. Fe2B-Mo2FeB2基金属陶瓷的显微组织与性能[J]. 中国有色金属学报, 2015, 25(4): 1012-1017. Wei Xiang, Chen Zhiguo, Huang Qisheng. Microstructure and properties of Fe2B-Mo2FeB2 based cermets[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(4): 1012-1017. [23]Ide T, Ando T. Reaction sintering of an Fe-6 Wt Pct B-48 Wt Pct Mo alloy in the presence of liquid phases[J]. Metallurgical Transactions A, 1989, 20(1): 17-24. [24]Hui L L, Xie Z J, Li C M, et al. Fe-X (X=B, N) binary compounds: First-principles calculations of electronic structures, theoretic hardness and magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 2018, 451: 761-769. [25]Shi Z T, Yin H Q, Xu Z F, et al. Microscopic theory of hardness and optimized hardness model of MX1B and M2X2B2 (M=W, Mo; X1=Fe, Co, X2=Fe, Co, Ni) transition-metal ternary borides by the first-principles calculations and experimental verification[J]. Intermetallics, 2019, 114: 106573-106584. |