[1]陈 孟, 黄俊霞, 叶晓宁. 低镍铬锰氮奥氏体不锈钢组织与力学性能[J]. 材料热处理学报, 2016, 37(3): 76-81. Chen Meng, Huang Junxia, Ye Xiaoning. Microstructure and mechanical properties of low-nickel Cr-Mn-N austenitic stainless steels[J]. Transactions of Materials and Heat Treatment, 2016, 37(3): 76-81. [2]王耘涛, 布茂东. 低镍和无镍奥氏体不锈钢的研究现状及进展[J]. 金属热处理, 2013, 38(1): 15-20. Wang Yuntao, Bu Maodong. Present research and progress on low-nickel and nickel-free austenitic stainless steels[J]. Heat Treatment of Metals, 2013, 38(1): 15-20. [3]张彩军, 嵇 爽, 赵英利, 等. 节镍型高氮奥氏体不锈钢的动态再结晶行为[J]. 金属热处理, 2017, 42(7): 31-34. Zhang Caijun, Ji Shuang, Zhao Yingli, et al. Dynamic recrystallization behavior of low-nickel high nitrogen austenitic stainless steel[J]. Heat Treatment of Metals, 2017, 42(7): 31-34. [4]孙 军, 钱才让, 王芝林, 等. 高锰低镍不锈钢的热处理工艺[J]. 金属热处理, 2015, 40(6): 134-137. Sun Jun, Qian Cairang, Wang Zhilin, et al. Heat treatment for high Mn and low Ni stainless steel[J]. Heat Treatment of Metals, 2015, 40(6): 134-137. [5]黄啸天, 向红亮, 张 伟, 等. 固溶温度对低镍奥氏体不锈钢组织与性能的影响[J]. 特种铸造及有色合金, 2019, 39(6): 595-599. Huang Xiaotian, Xiang Hongliang, Zhang Wei, et al. Effects of solution temperature on microstructure and properties of low nickel austenitic stainless steel[J]. Special Casting and Nonferrous Alloys, 2019, 39(6): 595-599. [6]水恒勇, 刘继雄, 李美琳, 等. 热处理工艺对新型节镍奥氏体无磁钢组织和性能的影响[J]. 机械工程材料, 2012, 36(5): 69-72. Shui Hengyong, Liu Jixiong, Li Meilin, et al. Effects of heat treatment process on microstructure and mechanical properties of new-typed low nickel austenitic nonmagnetic steel[J]. Materials for Mechanical Engineering, 2012, 36(5): 69-72. [7]赵英利, 嵇 爽, 张雲飞, 等. 节镍型高氮奥氏体不锈钢固溶处理加热过程中的组织演变[J]. 金属热处理, 2019, 44(1): 45-48. Zhao Yingli, Ji Shuang, Zhang Yunfei, et al. Microstructure evolution of low nickel high nitrogen austenitic stainless steel during heating in solid solution treatment[J]. Heat Treatment of Metals, 2019, 44(1): 45-48. [8]Ha V T, Jung W S. Effects of heat treatment processes on microstructure and creep properties of a high nitrogen 15Cr-15Ni austenitic heat resistant stainless steel[J]. Materials Science and Engineering: A, 2011, 528(24): 7115-7123. [9]Astafurov S V, Maier G G, Tumbusova I A, et al. The effect of solid-solution temperature on phase composition, tensile characteristics and fracture mechanism of V-containing CrMn-steels with high interstitial content C+N>1 mass.%[J]. Materials Science and Engineering: A, 2020, 770: 138534. [10]Ibrahim O H, Ibrahim I S, Khalifa T A F. Effect of aging on the toughness of austenitic and duplex stainless steel weldments[J]. Journal of Materials Science and Technology, 2010, 26(9): 810-816. [11]Anburaj J, Nazirudeen S S M, Narayanan R, et al. Ageing of forged superaustenitic stainless steel: Precipitate phases and mechanical properties[J]. Materials Science and Engineering A, 2012, 535: 99-107. [12]张玉碧, 刘海定, 王东哲, 等. 一种含氮Cr-Ni型奥氏体不锈钢的工艺设计与热处理研究[J]. 热加工工艺, 2016, 45(18): 177-181. Zhang Yubi, Liu Haiding, Wang Dongzhe, et al. Process design and heat treatment research of a nitrogen-containing Cr-Ni type austenitic stainless steel[J]. Hot Working Technology, 2016, 45(18): 177-181. [13]徐书峰, 苏 莹, 刘治宏. 节镍型奥氏体不锈钢CIMCN4的开发与生产[J]. 山西冶金, 2019, 42(1): 8-11. Xu Shufeng, Su Yin, Liu Zhihong. Development and production of nickel-saving austenitic stainless steel CIMCN4[J]. Shanxi Metallurgy, 2019, 42(1): 8-11. [14]马玉喜, 荣 凡, 周 荣, 等. 固溶时效对超高氮奥氏体不锈钢析出行为的影响[J]. 材料热处理学报, 2008, 29(3): 66-70. Ma Yuxi, Rong Fan, Zhou Rong, et al. Influence of solution treatment and aging process on precipitation behavior of super-high nitrogen austenitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2008, 29(3): 66-70. [15]马宏驰, 吴 伟, 周霄骋, 等. 不同热处理态的304和321奥氏体不锈钢在氯化铵环境中的应力腐蚀行为对比研究[J]. 表面技术, 2018, 47(11): 126-133. Ma Hongchi, Wu Wei, Zhou Xiaocheng, et al. Comparative study on stress corrosion cracking behaviors of 304 and 321 austenitic stainless steels by different heat treatment in NH4Cl solution[J]. Surface Technology, 2018, 47(11): 126-133. [16]刘维霞, 何 燕, 韩培德. 固溶温度与2101节镍双相不锈钢耐蚀性的关系[J]. 金属热处理, 2016, 41(8): 80-84. Liu Weixia, He Yan, Han Peide, et al. Effects of solution temperature on corrosion resistance of 2101 saving nickel duplex stainless steel[J]. Heat Treatment of Metals, 2016, 41(8): 80-84. [17]房 菲, 李静媛, 王一德, 等. 节镍奥氏体不锈钢Cr18Mn6Ni4N的组织及性能[J]. 哈尔滨工程大学学报, 2015, 36(2): 276-281. Fang Fei, Li Jingyuan, Wang Yide, et al. Microstructure and property of Cr18Mn6Ni4N nickel-saving austenite stainless steel[J]. Journal of Harbin Engineering University, 2015, 36(2): 276-281. [18]方轶琉, 高正源. 固溶温度对高氮节镍型双相不锈钢组织与性能的影响[J]. 金属热处理, 2017, 42(3): 62-64. Fang Yiliu, Gao Zhengyuan. Effect of solution temperature on microstructure and properties of a duplex stainless steel with high nitrogen and low nickel[J]. Heat Treatment of Metals, 2017, 42(3): 62-64. [19]邓宝柱, 彭 云, 廖丕博. 氮对316L不锈钢焊缝力学性能的影响[J]. 机械工程学报, 2011, 47(18): 66-71. Deng Baozhu, Peng Yun, Liao Pibo. Effect of nitrogen on the mechanical properties of weld metal of 316L austenitic stainless steel[J]. Journal of Mechanical Engineering, 2011, 47(18): 66-71. [20]丁秀平, 刘 雄, 何燕霖, 等. 316L奥氏体不锈钢中时效条件下析出相演变行为的研究[J]. 材料研究学报, 2009, 23(3): 269-274. Ding Xiuping, Liu Xiong, He Yanlin, et al. Evolution of precipitated phase during aging treatment in 316L austenitic stainless steel[J]. Chinese Journal of Materials Research, 2009, 23(3): 269-274. |