金属热处理 ›› 2021, Vol. 46 ›› Issue (9): 7-14.DOI: 10.13251/j.issn.0254-6051.2021.09.002
陈明宣, 马强, 孟君晟, 李成硕, 史晓萍
收稿日期:
2021-04-15
出版日期:
2021-09-25
发布日期:
2021-12-09
通讯作者:
孟君晟,副教授,E-mail:mengjs2008@163.com
作者简介:
陈明宣(1995—),男,硕士研究生,主要研究方向为材料表面改性,E-mail:cmx13156757825@163.com。
基金资助:
Chen Mingxuan, Ma Qiang, Meng Junsheng, Li Chengshuo, Shi Xiaoping
Received:
2021-04-15
Online:
2021-09-25
Published:
2021-12-09
摘要: 高熵合金涂层在工程实际应用中较传统合金具有良好的前景,对近年来高熵合金涂层的研究进展进行了概述。首先对制备高熵合金涂层的表面熔覆技术进行详细的介绍,其中包括激光熔覆技术、等离子熔覆技术、氩弧熔覆技术,分析了各表面熔覆技术的优缺点;然后总结了高熵合金涂层的组织及性能特征,涂层中相的组成包括:固溶体相、金属间化合物、纳米析出相、非晶相;性能上,高熵合金涂层由于各种效应的作用,具有高强度及硬度、优异的耐磨性、良好的耐腐蚀性及高温抗氧化性等一系列优异的性能;而后进一步分析了表面熔覆技术工艺参数对高熵合金涂层质量的影响规律、合金元素对高熵合金涂层性能的影响及热处理对高熵合金涂层相组织演变的影响;最后对高熵合金涂层的应用前景及其未来的研究方向进行展望。
中图分类号:
陈明宣, 马强, 孟君晟, 李成硕, 史晓萍. 高熵合金涂层的研究进展[J]. 金属热处理, 2021, 46(9): 7-14.
Chen Mingxuan, Ma Qiang, Meng Junsheng, Li Chengshuo, Shi Xiaoping. Research progress of high-entropy alloy coating[J]. Heat Treatment of Metals, 2021, 46(9): 7-14.
[1]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2]Yeh J W. Alloy design strategies and future trends in high-entropy alloys[J]. JOM, 2013, 65(12): 1759-1771. [3]姜 越, 周广泰, 程思梦, 等. 退火温度对CrFeCoNiTi1.5高熵合金微结构与性能的影响[J]. 金属热处理, 2020, 45(3): 108-113. Jiang Yue, Zhou Guangtai, Cheng Simeng, et al. Effect of annealing temperature on microstructure and properties of CrFeCoNiTi1.5 high entropy alloy[J]. Heat Treatment of Metals, 2020, 45(3): 108-113. [4]贾智轩, 褚延朋, 冯运莉, 等. 高熵合金制备及热处理工艺研究进展[J]. 金属热处理, 2020, 45(10): 23-29. Jia Zhixuan, Chu Yanpeng, Feng Yunli, et al. Progress in preparation and heat treatment of high entropy alloys[J]. Heat Treatment of Metals, 2020, 45(10): 23-29. [5]王志新, 周家臣, 马明星, 等. 退火对AlCoCrFeMnTi高熵合金相组成与显微形貌的影响[J]. 金属热处理, 2020, 45(4): 144-148. Wang Zhixin, Zhou Jiachen, Ma Mingxing, et al. Effect of annealing on phase composition and microstructure of AlCoCrFeMnTi high entropy alloy[J]. Heat Treatment of Metals, 2020, 45(4): 144-148. [6]白 莉, 王宇哲, 吕煜坤, 等. 碳对无Co高熵合金Fe40Mn30Ni10Cr10Al10组织以及力学性能的影响[J]. 材料导报, 2020, 34(17): 17072-17076. Bai Li, Wang Yuzhe, Lü Yukun, et al. The effect of carbon on the microstructure and mechanical properties of the Co-free high-entropy alloy Fe40Mn30Ni10Cr10Al10 [J]. Materials Review, 2020, 34(17): 17072-17076. [7]王睿鑫, 唐 宇, 张 虹. HfZrTiTa难熔高熵合金的组织结构及其性能[J]. 材料科学与工程学报, 2020, 38(4): 529-535. Wang Ruixin, Tang Yu, Zhang Hong. Microstructure and properties of HfZrTiTa refractory high-entropy alloy[J]. Journal of Materials Science and Engineering, 2020, 38(4): 529-535. [8]李荣斌, 黄 天, 蒋春霞, 等. TaWTiVCr高熵合金薄膜的制备及微观结构力学性能研究[J]. 表面技术, 2020, 49(6): 170-178. Li Rongbin, Huang Tian, Jiang Chunxia, et al. Preparation of TaWTiVCr high-entropy alloy film and study on microstructure and mechanical properties[J]. Surface Technology, 2020, 49(6): 170-178. [9]马雪龙. CoCrFeNiAlMox系高熵合金组织和性能的研究[D]. 西安: 西安理工大学, 2020. Ma Xuelong. Research on the structure and properties of CoCrFeNiAlMox high-entropy alloy[D]. Xi'an: Xi'an University of Technology, 2020. [10]Li Guodong, Liu Maowen, Lyu Shaoyuan, et al. Simultaneously enhanced strength and strain hardening capacity in FeMnCoCr high-entropy alloy via harmonic structure design[J]. Scripta Materialia, 2020, 191: 196-201. [11]张津超, 石世宏, 龚燕琪, 等. 激光熔覆技术研究进展[J]. 表面技术, 2020, 49(10): 1-11. Zhang Jinchao, Shi Shihong, Gong Yanqi, et al. Research progress of laser cladding technology[J]. Surface Technology, 2020, 49(10): 1-11. [12]Zhang M N, Ouyang W T, Jiao J K, et al. AlCoCuFeNi high-entropy alloy coating fabricated by laser cladding with gas-atomized pre-alloy powders[J]. Materials Science Forum, 2020, 993: 1148-1154. [13]Qiu Xingwu. Corrosion behavior of Al2CrFeCoxCuNiTi high-entropy alloy coating in alkaline solution and salt solution[J]. Results in Physics, 2019, 12: 1737-1741. [14]尚晓娟, 刘其斌, 郭亚雄, 等. Nb对激光熔覆MoFeCrTiWAlNbx高熔点高熵合金组织与性能的影响[J]. 功能材料, 2017, 48(12): 12214-12220. Shang Xiaojuan, Liu Qibin, Guo Yaxiong, et al. Effect of Nb on the microstructure and properties of laser cladding MoFeCrTiWAlNbx high melting point and high entropy alloy[J]. Functional Materials, 2017, 48(12): 12214-12220. [15]Guo Yaxiong, Wang Huilin, Liu Qibin. Microstructure evolution and strengthening mechanism of laser-cladding MoFeCrTiWAlNb refractory high-entropy alloy coatings[J]. Journal of Alloys and Compounds, 2020, 834: 155147. [16]Shu Fengyuan, Yang Biao, Dong Shiyun, et al. Effects of Fe-to-Co ratio on microstructure and mechanical properties of laser cladded FeCoCrBNiSi high-entropy alloy coatings[J]. Applied Surface Science, 2018, 450: 538-544. [17]彭竹琴, 李俊魁, 卢金斌, 等. 稀土CeO2对AlCoCuFeMnNi高熵合金组织与性能的影响[J]. 材料工程, 2018, 46(8): 95-101. Peng Zhuqin, Li Junkui, Lu Jinbin, et al. Effect of rare earth CeO2 on the structure and properties of AlCoCuFeMnNi high-entropy alloy[J]. Materials Engineering, 2018, 46(8): 95-101. [18]彭竹琴, 李俊魁, 张国涛, 等. Ni60对AlCoCuFeMnNi高熵合金涂层的影响[J]. 金属热处理, 2017, 42(9): 191-194. Peng Zhuqin, Li Junkui, Zhang Guotao, et al. Influence of Ni60 on AlCoCuFeMnNi high-entropy alloy coating[J]. Heat Treatment of Metals, 2017, 42(9): 191-194. [19]王智慧, 王 虎, 贺定勇, 等. 等离子熔覆原位自生NbC/高熵合金显微组织研究[J]. 稀有金属材料与工程, 2015, 44(12): 3156-3160. Wang Zhihui, Wang Hu, He Dingyong, et al. Study on the microstructure of in-situ NbC/high-entropy alloy by plasma cladding[J]. Rare Metal Materials and Engineering, 2015, 44(12): 3156-3160. [20]王 虎, 王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究[J]. 材料导报, 2018, 32(4): 589-592. Wang Hu, Wang Zhihui. Microstructure and properties of AlxCoCrFeNi high-entropy alloy prepared by plasma cladding[J]. Materials Review, 2018, 32(4): 589-592. [21]Meng Junsheng, Shi Xiaoping, Zhang Shaojun, et al. Friction and wear properties of TiN-TiB2-Ni based composite coatings by argon arc cladding technology[J]. Surface and Coatings Technology, 2019, 374: 437-447. [22]Wang Caimei, Yu Yang, Yu Jianxing, et al. Effect of the macro-segregation on corrosion behavior of CrMnFeCoNi coating prepared by arc cladding[J]. Journal of Alloys and Compounds, 2020, 846: 156263. [23]董世知, 孟 旭, 马 壮, 等. WC和Al2O3对氩弧熔覆FeAlCoCrCuTi(0.4)高熵合金涂层组织和耐冲蚀性能影响[J]. 焊接学报, 2019, 40(7): 127-132. Dong Shizhi, Meng Xu, Ma Zhuang, et al. Effects of WC and Al2O3 on the microstructure and erosion resistance of FeAlCoCrCuTi(0.4) high-entropy alloy coating by argon arc cladding[J]. Transactions of the China Welding Institution, 2019, 40(7): 127-132. [24]董世知, 孟 旭, 马 壮, 等. 粉煤灰活性氩弧熔覆FexAlCoCrCuTi(0.4) 高熵合金涂层的组织和冲蚀磨损性能[J]. 材料保护, 2018, 51(8): 90-94. Dong Shizhi, Meng Xu, Ma Zhuang, et al. Microstructure and erosive wear properties of FexAlCoCrCuTi(0.4) high-entropy alloy coating with fly ash active argon arc cladding[J]. Material Protection, 2018, 51(8): 90-94. [25]Shu F Y, Liu S, Zhao H Y, et al. Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder[J]. Journal of Alloys and Compounds, 2017, 731: 662-666. [26]Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448-511. [27]漆陪部, 梁秀兵, 仝永刚, 等. NbMoTaW高熵合金涂层的制备与表征[J]. 应用激光, 2018, 38(3): 382-386. Qi Peibu, Liang Xiubing, Tong Yonggang, et al. Preparation and characterization of NbMoTaW high-entropy alloy coating[J]. Applied Laser, 2018, 38(3): 382-386. [28]Gu Z, Mao P, Gou Y, et al. Microstructure and properties of MgMoNbFeTi2Yx high entropy alloy coatings by laser cladding[J]. Surface and Coatings Technology, 2020, 402: 126303. [29]Zhang Mina, Zhou Xianglin, Yu Xiangnan, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J]. Surface and Coatings Technology, 2017, 311: 321-329. [30]孟君晟. 氩弧熔覆原位自生TiC颗粒增强Ni60A复合涂层组织及性能研究[D]. 哈尔滨: 黑龙江科技学院, 2008. Meng Junsheng. Study on the microstructure and properties of in-situ TiC particle reinforced Ni60A composite coating by argon arc cladding[D]. Harbin: Heilongjiang Institute of Science and Technology, 2008. [31]Huang C, Zhang Y Z, Vilar R, et al. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate[J]. Materials & Design, 2012, 41: 338-343. [32]Middleburgh S C, King D M, Lumpkin G R, et al. Segregation and migration of species in the CrCoFeNi high entropy alloy[J]. Journal of Alloys and Compounds, 2014, 599: 179-182. [33]李青宇, 李涤尘, 张 航, 等. 激光熔覆沉积成形NbMoTaTi难熔高熵合金的组织与强度研究[J]. 航空制造技术, 2018, 61(10): 60-66. Li Qingyu, Li Dichen, Zhang Hang, et al. Study on the structure and strength of NbMoTaTi refractory high-entropy alloy formed by laser cladding deposition[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 60-66. [34]黄 阳. 激光熔覆Cf-Ni/FeCoCrNiCu高熵合金复合涂层的研究[D]. 南昌: 华东交通大学, 2018. Huang Yang. Research on laser cladding Cf-Ni/FeCoCrNiCu high-entropy alloy composite coating[D]. Nanchang: East China Jiaotong University, 2018. [35]张 天. Mn13高锰钢表面等离子熔覆制备FeCoNiCrMnTix高熵合金涂层组织性能研究[D]. 广州: 广东工业大学, 2019. Zhang Tian. Microstructure and properties of FeCoNiCrMnTix high-entropy alloy coating prepared by plasma cladding on Mn13 high manganese steel surface[D]. Guangzhou: Guangdong University of Technology, 2019. [36]魏 民, 万 强, 李晓峰, 等. 熔覆电流对FeCoCrNiMn高熵合金涂层组织与性能的影响[J]. 表面技术, 2019, 48(6): 138-143. Wei Min, Wan Qiang, Li Xiaofeng, et al. The influence of cladding current on the structure and properties of FeCoCrNiMn high-entropy alloy coating[J]. Surface Technology, 2019, 48(6): 138-143. [37]魏仕勇, 彭文屹, 赵文超, 等. 等离子熔覆CoCrFeMnNi高熵合金涂层参数优化及组织与性能研究[J]. 材料导报, 2020, 34(17): 17052-17057. Wei Shiyong, Peng Wenyi, Zhao Wenchao, et al. Parameter optimization and microstructure and properties of plasma cladding CoCrFeMnNi high-entropy alloy coating[J]. Materials Review, 2020, 34(17): 17052-17057. [38]郭 炜. 氩弧熔覆制备高熵合金涂层组织和性能研究[D]. 郑州: 郑州大学, 2014. Guo Wei. Research on microstructure and properties of high-entropy alloy coating prepared by argon arc cladding[D]. Zhengzhou: Zhengzhou University, 2014. [39]王 倪. 氩弧熔覆高熵合金涂层及其复合涂层组织性能研究[D]. 阜新: 辽宁工程技术大学, 2016. Wang Ni. Study on the microstructure and properties of high-entropy alloy coating and composite coating by argon arc cladding[D]. Fuxin: Liaoning University of Technology, 2016. [40]霍文燚, 时海芳, 张竞元. 熔覆电流对AlCrFeCoNiCu高熵合金涂层显微组织的影响[J]. 金属热处理, 2014, 39(8): 24-27. Huo Wenyi, Shi Haifang, Zhang Jingyuan. The effect of cladding current on the microstructure of AlCrFeCoNiCu high-entropy alloy coating[J]. Heat Treatment of Metals, 2014, 39(8): 24-27. [41]霍文燚, 时海芳. 熔覆电流对氩弧熔覆FeCrNiCoMn高熵合金涂层组织及显微硬度的影响[J]. 金属热处理, 2014, 39(9): 45-47. Huo Wenyi, Shi Haifang. The effect of cladding current on the microstructure and microhardness of FeCrNiCoMn high-entropy alloy coating by argon arc cladding[J]. Heat Treatment of Metals, 2014, 39(9): 45-47. [42]张 丽, 沙明红, 张峻巍, 等. Al含量对AlxCoCrFeNiTi0.5激光涂层组织和耐磨性的影响[J]. 材料热处理学报, 2015, 36(12): 185-189. Zhang Li, Sha Minghong, Zhang Junwei, et al. Effect of Al content on microstructure and wear resistance of AlxCoCrFeNiTi0.5 laser coating[J]. Transactions of Materials and Heat Treatment, 2015, 36(12): 185-189. [43]张 冲, 黄 标, 戴品强. 铬含量对FeCoCrxNiB高熵合金涂层氧化行为的影响[J]. 中国表面工程, 2016, 29(1): 32-38. Zhang Chong, Huang Biao, Dai Pinqiang. The effect of chromium content on the oxidation behavior of FeCoCrxNiB high-entropy alloy coating[J]. China Surface Engineering, 2016, 29(1): 32-38. [44]覃贞山, 李忠文, 姜 浩, 等. Mo含量对FeCrNiCoTiMox高熵合金熔覆层结构性能影响[J]. 上海工程技术大学学报, 2016, 30(1): 76-78. Qin Zhenshan, Li Zhongwen, Jiang Hao, et al. Effect of Mo content on structure and properties of FeCrNiCoTiMox high-entropy alloy cladding layer[J]. Journal of Shanghai University of Engineering Science, 2016, 30(1): 76-78. [45]Qiu Xingwu, Liu Chunge. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding[J]. Journal of Alloys and Compounds, 2013, 553: 216-220. [46]吴炳乾, 饶湖常, 张 冲, 等. Si含量对FeCoCr0.5NiBSix高熵合金涂层组织结构和耐磨性的影响[J]. 表面技术, 2015, 44(12): 85-91. Wu Bingqian, Rao Huchang, Zhang Chong, et al. The effect of Si content on the structure and wear resistance of FeCoCr0.5NiBSix high-entropy alloy coatings[J]. Surface Technology, 2015, 44(12): 85-91. [47]Zhang H B, Fu Z Y. Effects of annealing treahnent on phase composition and microstructure of CoCrFeNiTiAI high-entropy alloys[J]. Intennetallics, 2012, 22: 24-32. [48]Mishra R h, Shahi R R. Effect of annealing conditions and temperatures on phase formation and magnetic behaviour of CrFeMnNiTi high entropy alloy[J]. Journal of Magnetism and Magnetic Materials, 2018, 465: 169-175. [49]Laplanche G, Horst O, Otto F, et al. Microstructural evolution of a CoCrFeMnNi high-entropy alloy after swaging and annealing[J]. Journal of Alloys and Compounds, 2015, 647: 548-557. [50]Zhang H, Pan Y, He Y Z. Grain refinement and boundary misorientation transition by annealing in the laser rapid solidified 6FeNiCoCrAlTiSi multicomponent ferrous alloy coating[J]. Surface and Coatings Technology, 2011, 205(16): 4068-4072. [51]翁子清, 姚建华, 董 刚, 等. 退火对激光熔覆制备FeCrNiCoMn高熵合金涂层组织与性能的影响[J]. 电加工与模具, 2014(2): 38-42. Weng Ziqing, Yao Jianhua, Dong Gang, et al. Effect of annealing on the structure and properties of FeCrNiCoMn high-entropy alloy coating prepared by laser cladding[J]. Electrical Machining and Die, 2014(2): 38-42. [52]Sha Minghong, Zhang Li, Zhang Junwei, et al. Effects of annealing on the microstructure and wear resistance of AlCoCrFeNiTi0.5 high-entropy alloy coating prepared by laser cladding[J]. Rare Metal Materials and Engineering, 2017, 46(5): 1237-1240. |
[1] | 李立, 曾艳, 吴晓春. 4Cr5Mo2VCo钢的热处理工艺优化[J]. 金属热处理, 2022, 47(4): 133-140. |
[2] | 王方军, 王东哲, 万红, 时瑶, 沈涛. 热处理和冷变形量对定膨胀合金4J32C线膨胀系数的影响[J]. 金属热处理, 2022, 47(4): 199-203. |
[3] | 王绍灼, 孟晗, 王芬, 樊海卫, 李燕, 唐超. 改善低氧TC4-LC及重熔TC4钛合金性能的热处理工艺[J]. 金属热处理, 2022, 47(4): 204-207. |
[4] | 苏勇, 王帅, 王吉星, 于兴福, 刘洪秀, 刘金玲. 复合化学热处理对G13Cr4Mo4Ni4V钢组织和硬度的影响[J]. 金属热处理, 2022, 47(4): 226-230. |
[5] | 王敬元, 吴松全, 张博华, 辛社伟, 杨义, 王皞, 黄爱军. 固溶时效处理对BT25y钛合金显微组织及硬度的影响[J]. 金属热处理, 2022, 47(3): 14-19. |
[6] | 樊洋, 杨明华, 陈凯敏, 孙丙岩. 焊后热处理对31CrMoV9钢电子束焊接接头组织及性能的影响[J]. 金属热处理, 2022, 47(3): 57-60. |
[7] | 陈善勇, 王快社, 乔柯, 王文. 碱热处理对搅拌摩擦加工AZ31镁合金耐腐蚀性能的影响[J]. 金属热处理, 2022, 47(3): 61-66. |
[8] | 冯锐, 李利连, 帖锦芳, 侯嘉强, 米奕媛. 高温形变热处理对20CrMnTiH钢锻件组织及性能的影响[J]. 金属热处理, 2022, 47(3): 72-76. |
[9] | 方秀荣, 刘留, 徐慧慧, 高扬. 渗碳前预热处理对17CrNiMo6钢制齿轮轴畸变的影响[J]. 金属热处理, 2022, 47(3): 113-118. |
[10] | 张颖, 王浩军, 陈素明, 胡广, 欧阳德来, 崔霞, 胡生双. 热处理对激光立体成形TB18钛合金组织和力学性能的影响[J]. 金属热处理, 2022, 47(3): 124-129. |
[11] | 时海芳, 李强. 碳含量对Al0.5Co0.5NiCrFe高熵合金涂层组织与性能的影响[J]. 金属热处理, 2022, 47(3): 136-141. |
[12] | 海侠女, 杨扬, 黄太伟, 范王展, 桂伟民, 何亮亮. 淬透性细化分级8620H钢的热处理性能研究[J]. 金属热处理, 2022, 47(3): 155-158. |
[13] | 龙亮, 胡齐贤, 罗云, 郑红祥, 王玉杰. 大型焊接容器局部热处理防畸变工装优化设计[J]. 金属热处理, 2022, 47(3): 234-238. |
[14] | 崔鼎, 车永平. 带内花键零件的畸变控制方法[J]. 金属热处理, 2022, 47(3): 252-256. |
[15] | 董瑞, 陈林, 岑耀东, 包喜荣. 不同热处理条件下贝氏体钢的微观组织和疲劳裂纹扩展[J]. 金属热处理, 2022, 47(2): 153-158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 中国机械总院集团北京机电研究所有限公司 《金属热处理》编辑部
北京海淀区学清路18号 北京机电研究所有限公司内 邮政编码:100083 电话:010-62935465 82415083 E-mail:jsrcl@vip.sina.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn