[1]马济民, 贺金宇, 庞克昌, 等. 钛铸锭和钛锻造[M]. 北京: 冶金工业出版社, 2012. [2]罗锦华, 朱燕丽, 孙小平, 等. 热加工及热处理工艺对Ti80合金棒材组织和性能的影响[J]. 钛工业进展, 2016, 33(2): 20-24. Luo Jinhua, Zhu Yanli, Sun Xiaoping, et al. Effects of hot working process and heat treatment on microstructures and mechanical properties of Ti80 alloy bars[J]. Titanium Industry Progress, 2016, 33(2): 20-24. [3]侯 鹏, 李进元, 李 维, 等. 热处理工艺对Ti80合金棒材组织与性能的影响[J]. 机械工程与自动化, 2013(2): 107-108, 111. Hou Peng, Li Jinyuan, Li Wei, et al. Effect of heat treatment process on structure and properties of Ti80 alloy bars[J]. Mechanical Engineering and Automation, 2013(2): 107-108, 111. [4]李 梁, 孙建科, 孟祥军, 等. 通过热循环变形改善Ti80合金的超塑性[J]. 材料开发与应用, 2005, 20(6): 1-3, 8. Li Liang, Sun Jianke, Meng Xiangjun, et al. Improvement of superplasticity of Ti80 alloy through thermal cycling deformation[J]. Development and Application of Materials, 2005, 20(6): 1-3, 8. [5]袁 满, 曹如玉, 张亚娟, 等. Ti80钛合金相变点的测定[J]. 热加工工艺, 2013, 42(14): 57-59, 92. Yuan Man, Cao Yuru, Zhang Yajuan, et al. Measurement for phase transformation point of Ti80 alloy[J]. Hot Working Technology, 2013, 42(14): 57-59, 92. [6]蒋 鹏, 孟宪亮, 刘茵琪, 等. Ti80合金锻造工艺对显微组织和性能的影响[J]. 稀有金属材料与工程, 2005, 34(S3): 286-288. Jiang Peng, Meng Xianliang, Liu Yinqi, et al. Effects of forge technology on microstructure and mechanical properties of Ti80 alloy[J]. Rare Metal Materials and Engineering, 2005, 34(S3): 286-288. [7]王巧莉, 代 春, 成小丽, 等. Ti80钛合金退火温度对挤压管材组织与性能的影响[J]. 中国钛业, 2012(3): 32-34. Wang Qiaoli, Dai Chun, Cheng Xiaoli, et al. Effect of annealing process on microstructure and properties of Ti80 alloy tube produced by extruding[J]. China Titanium Industry, 2012(3): 32-34. [8]马凡蛟, 杜予晅, 陈海生, 等. 退火工艺对Ti80合金组织与性能的影响[J]. 金属热处理, 2012, 37(4): 88-91. Ma Fanjiao, Du Yuxuan, Chen Haisheng, et al. Effect of annealing process on microstructure and properties of Ti80 alloy[J]. Heat Treatment of Metals, 2012, 37(4): 88-91. [9]王松茂, 白新房, 王 辉, 等. Ti-80钛合金冲击韧性及力学性能异常原因探析[J]. 西安文理学院学报(自然科学版), 2013, 16(3): 84-87. Wang Songmao, Bai Xinfang, Wang Hui, et al. On the abnormality of titanium alloy Ti-80's impact toughness and mechanical properties[J]. Journal of Xi'an University of Arts and Science(Natural Science Edition), 2013, 16(3): 84-87. [10]王安东, 张禄祥, 陈彩凤, 等. 固溶时效处理对Ti-5322钛合金组织与性能的影响[J]. 金属热处理, 2020, 45(12): 24-28. Wang Andong, Zhang Luxiang, Chen Caifeng, et al. Effect of solution and aging treatment on microstructure and tensile properties of Ti-5322 alloy[J]. Heat Treatment of Metals, 2020, 45(12): 24-28. [11]杨 洋, 锁红波, 陈哲源, 等. 固溶温度对电子束熔丝成形TC17合金组织与性能的影响[J]. 金属热处理, 2016, 41(9): 141-144. Yang Yang, Suo Hongbo, Chen Zheyuan, et al. Effect of solution temperature on microstructure and mechanical properties of TC17 alloy fabricated by electron beam wire deposition[J]. Heat Treatment of Metals, 2016, 41(9): 141-144. [12]包春玲, 马栓柱, 杨海涛, 等. 热处理温度对等轴初晶TC4钛合金组织及性能的影响[J]. 铸造, 2012, 61(8): 922-924. Bao Chunling, Ma Shuanzhu, Yang Haitao, et al. Effects of heat treatment temperature on microstructure and properties of TC4 titanium alloy with equiaxed primary microstructure[J]. China Foundry, 2012, 61(8): 922-924. [13]张宝昌. 有色金属及其热处理[M]. 西安: 西北工业大学出版社, 1993. [14]杨 柳, 代广霖, 王 莹, 等. 退火工艺对TC4钛合金板材组织和性能的影响[J]. 金属热处理, 2020, 45(1): 122-125. Yang Liu, Dai Guanglin, Wang Ying, et al. Effect of annealing process on microstructure and properties of TC4 alloy sheet[J]. Heat Treatment of Metals, 2020, 45(1): 122-125. |