[1]汤春峰, 曲选辉, 段柏华, 等. 新型钴基耐热合金高温流变变形行为[J]. 北京科技大学学报, 2006(6): 542-545. Tang Chunfeng, Qu Xuanhui, Duan Bohua, et al. Flow behavior of a modified cobalt alloy at high temperature[J]. Journal of University of Science and Technology Beijing, 2006(6): 542-545. [2]Feng Zhihao, Sun Xinyang, Han Pengbiao, et al. Microstructure and microhardness of a novel TiZrAlV alloy by laser gas nitriding at different laser powers[J]. Rare Metals, 2020(3): 270-278. [3]郑玉荣, 吴新年, 王晓民. 镍基高温合金核心技术发展[J]. 中国材料进展, 2015, 34(3): 246-252. Zheng Yurong, Wu Xinnian, Wang Xiaomin. Study on the core technology of Ni-based superalloys[J]. Materials China, 2015, 34(3): 246-252. [4]Wang Zixing, Huang Shuo, Zhang Beijiang, et al. Study on freckle of a high-alloyed GH4065 nickel base wrought superalloy[J]. Acta Metallurgica Sinica, 2019, 55(3): 417-426. [5]Wang Huan, Yuan Chao, Guo Jianting, et al. High cycle fatigue behavior of a wrought nickel-base superalloy GH4698[J]. Materials Science Forum, 2014, 788: 414-420. [6]王 衣. 新型Ni-Co基变形高温合金的成分设计与组织性能关系[D]. 上海: 上海交通大学, 2010. Wang Yi. Thermodynamic design and its microstructure-property relationship of anoval Ni-Co base superalloy[D]. Shanghai: Shanghai Jiao Tong University, 2010. [7]孙信阳, 韩鹏彪, 岳 赟, 等. 新型TiZrAlV合金激光气体氮化涂层的组织演变及其性能[J]. 河北工业科技, 2019, 36(6): 377-383. Sun Xinyang, Han Pengbiao, Yue Yun, et al. Microstructure evolution and properties of the coating layer on novel TiZrAlV alloy by laser gas nitriding[J]. Hebei Journal of Industrial Science and Technology, 2019, 36(6): 377-383. [8]Luo Y W, Ma T, Shao W W, et al. Effects of heat treatment on microstructures and mechanical properties of GH4169/K418 functionally graded material fabricated by laser melting deposition[J]. Materials Science & Engineering A, 2021, 821: 141601. [9]Dong Huicong, Feng Zhihao, Liang Shunxing, et al. Evolution of microstructure, mechanical properties and corrosion behaviors using cooling rate regulation in a novel ZrTi-based alloy[J]. Journal of Materials Research and Technology, 2020, 9(3): 3471-3480. [10]黎 波, 袁其炜, 靳 凯, 等. GH625高温合金管缩径旋压成形数值模拟及试验研究[J]. 航空制造技术, 2017(18): 36-42. Li Bo, Yuan Qiwei, Jin Kai, et al. Numerical simulation and experiment study on tube spinning of GH625 reducer tube[J]. Aeronautical Manufacturing Technology, 2017(18): 36-42. [11]王泗瑞. GH4169高温合金多向锻造工艺微观组织演变模拟研究[D]. 秦皇岛: 燕山大学, 2019. Wang Sirui. GH4169 superalloy multi-directional forging process and simulation study of microstructure evolution[D]. Qinhuangdao: Yanshan University, 2019. [12]魏中洁. 图像分析仪在金相分析中的应用[J]. 科技风, 2014(6): 109. [13]程丽杰. 国内外晶粒度标准综述[J]. 理化检验(物理分册), 2019, 55(8): 515-525, 529. Cheng Lijie. Overview of grain size standards at home and abroad[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2019, 55(8): 515-525, 529. [14]GB/T 6394—2017, 金属平均晶粒度测定方法[S]. [15]刘 猛, 李爱民, 张欢欢, 等. 冶炼工艺对GH4145合金显微组织和力学性能的影响[J]. 中国冶金, 2020, 30(10): 17-21. Liu Meng, Li Aimin, Zhang Huanhuan, et al. Effect of melting technologies on microstructure and mechanical properties of GH4145 superalloy[J]. China Metallurgy, 2020, 30(10): 17-21. [16]王 岩, 邵文柱, 甄 良. GH4169合金δ相的溶解行为及对变形机制的影响[J]. 中国有色金属学报, 2011, 21(2): 341-349. Wang Yan, Shao Wenzhu, Zhen Liang. Dissolution behavior of δ phase and its effects on deformation mechanism of GH4169 alloy[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(2): 341-349. [17]孙昊昉, 田素贵, 刘丽荣, 等. 镍基高温合金中γ″和δ相的热力学性质与相变判定[J]. 沈阳工业大学学报, 2019(12): 1-8. Sun Haofang, Tian Sugui, Liu Lirong, et al. Thermodynamic properties and phase transition determination of γ″ and δ phases in nickel-based superalloy[J]. Journal of Shenyang University of Technology, 2019(12): 1-8. [18]陈 晨. 冷变形GH4169合金室温力学性能及δ相析出规律研究[D]. 沈阳: 沈阳理工大学, 2015. Chen Chen. Research on the room temperature mechanical properties and δ phase precipitation of cold rolled GH4169 alloy[D]. Shenyang: Shenyang Ligong University, 2015. [19]Lin Y C, Deng J, Jiang Y Q, et al. Effects of initial δ phase on hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy[J]. Materials Science & Engineering A, 2014, 598: 251-262. [20]武华江. GH3625合金时效组织演变及其对蠕变持久性能的影响[D]. 秦皇岛: 燕山大学, 2019. Wu Huajiang. Microstructure evolution during aging process and the effect on creep rupture property of GH3625 superalloy[D]. Qinhuangdao: Yanshan University, 2019. [21]Fedorova T, Rösler J, Gehrmann B, et al. Invention of A New 718-type Ni-Co Superalloy Family for High Temperature Applications at 750 ℃[M]. John Wiley & Sons, Inc. 2014. [22]明宪良, 陈 静, 谭 华, 等. 激光修复GH4169高温合金的持久断裂机制研究[J]. 中国激光, 2015, 42(4): 71-77. Ming Xianliang, Chen Jing, Tan Hua, et al. Research on persistent fracture mechanism of laser forming repaired GH4169 superalloy[J]. Chinese Journal of Lasers, 2015, 42(4): 71-77. [23]任 航. Nb添加对激光增材制造GH4169合金组织性能的影响[D]. 南昌: 南昌航空大学, 2019. Ren Hang. Microstructure and mechanical properties of Nb modified GH4169 superalloy produced by laser additive manufacturing[D]. Nanchang: Nanchang Hangkong University, 2019. [24]李 宁, 李爱民, 王艾竹, 等. 固溶处理冷却速度对GH4141合金组织及性能的影响[C]//第十三届中国高温合金年会论文集. 北京: 冶金工业出版社, 2015: 56-59. [25]Liao Y S, Lin H M, Wang J H. Behaviors of end milling Inconel 718 superalloy by cemented carbide tools[J]. Journal of Materials Processing Technology, 2008, 201(1-3): 460-465. [26]乔雪璎, 王延庆, 蒙肇斌, 等. 碳含量对GH4199合金拉伸、持久性能及组织的影响[J]. 材料与冶金学报, 2004(1): 62-66. Qiao Xueying, Wang Yanqing, Meng Zhaobin, et al. Effects of the carbon content on the tensile properties, stress rupture properties and microstructure of superalloy GH4199[J]. Journal of Materials and Metallurgy, 2004(1): 62-66. [27]董 健. GH901合金碳化物的研究[J]. 金属材料与冶金工程, 2009, 37(4): 18-20. Dong Jian. Study on GH901 alloy carbide[J]. Metal Materials and Metallurgy Engineering, 2009, 37(4): 18-20. [28]Ranganath S, Guo C, Holt S. Experimental investigations into the carbide cracking phenomenon on Inconel 718 superalloy material[C]//Asme International Manufacturing Science & Engineering Conference. 2009. |