[1]Xu W, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy[J]. Nature Materials, 2015, 14(12): 1229-1235. [2]张密林, Elkin F M. 镁锂超轻合金[M]. 北京: 科学出版社, 2010. [3]Morishige T, Obata Y, Goto T, et al. Effect of Al composition on the corrosion resistance of Mg-14 mass% Li system alloy[J]. Materials Transaction, 2016, 57(10): 1853-1856. [4]Lin M C, Tsai C Y, Uan J Y. Electrochemical behaviour and corrosion performance of Mg-Li-Al-Zn anodes with high Al composition[J]. Corrosion Science, 2009, 51(10): 2463-2472. [5]Aurbach D, Gofer Y, Lu Z, et al. A short review on the comparison between Li battery systems and rechargeable magnesium battery technology[J]. Journal of Power Sources, 2001, 97: 28-32. [6]Chen Zhaoyun, Dong Zichao, Yu Chun, et al. Microstructure and properties of Mg-5.21Li-3.44Zn-0.32Y-0.01Zr alloy[J]. Materials Science and Engineering A, 2013, 559: 651-654. [7]Hou L, Wang T, Wu R, et al. Microstructure and mechanical properties of Mg-5Li-1Al sheets prepared by accumulative rolling bonding[J]. Journal of Materials Science and Technology, 2018, 34(7): 317-323. [8]Song G, Atrens A, John D S. An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys[C]//Magnesium Technology 2001 Symposium, Minerals, Metals and Materials Society. New Orleans, LA, 2001: 255-262. [9]Wang N, Mu Y, Xiong W, et al. Effect of crystallographic orientation on the discharge and corrosion behaviour of AP65 magnesium alloy anodes[J]. Corrosion Science, 2018, 144: 107-126. [10]Shi Zhiming, Cao Fuyong, Song Guangling, et al. Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg-RE alloys: RE=Ce, La, Nd, Y, Gd[J]. Corrosion Science, 2013, 76(11): 98-118. [11]Hanwu D, Limin W, Ke L, et al. Microstructure and deformation behaviors of two Mg-Li dual-phase alloys with an increasing tensile speed[J]. Materials and Design, 2016, 90: 157-164. [12]Wu L, Cui C, Wu R, et al. Effects of Ce-rich RE additions and heat treatment on the microstructure and tensile properties of Mg-Li-Al-Zn-based alloy[J]. Materials Science and Engineering A, 2011, 528(4/5): 2174-2179. [13]Zheng J, Wang Q, Jin Z, et al. Effect of Sm on the microstructure, mechanical properties and creep behavior of Mg-0.5Zn-0.4Zr based alloys[J]. Materials Science and Engineering A, 2010, 527(7/8): 1677-1685. [14]Sun Y, Wang R, Ren J, et al. Microstructure, texture, and mechanical properties of as-extruded Mg-xLi-3Al-2Zn-0. 2Zr alloys (x = 5, 7, 8, 9, 11 wt%)[J]. Materials Science and Engineering A, 2019, 755: 201-210. [15]Gurland J, Plateau J. Mechanism of ductile rupture of metals containing inclusions[J]. Copper Alloy, 1963, 56: 442-454. [16]Li W, Kun Y, Hanqing X, et al. Composition optimization and electrochemical properties of Mg-Al-Pb-(Zn) alloys as anodes for seawater activated battery[J]. Electrochimica Acta, 2016, 194: 40-51. [17]Shi Z, Liu M, Atrens A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation[J]. Corrosion Science, 2010, 52(2): 579-588. [18]Sun Y, Wang R, Peng C, et al. Microstructure and corrosion behavior of as-extruded Mg-xLi-3Al-2Zn-0.2Zr alloys (x=5, 8, 11 wt.%)[J]. Corrosion Science, 2020, 167: 108487. [19]Birbilis N, Ralston K D, Virtanen S, et al. Grain character influences on corrosion of ECAPed pure magnesium[J]. British Corrosion Journal, 2010, 45(3): 224-230. |