[1]朱勤天. 8Cr13MoV钢碳化物控制及对刀具锋利性能的影响[D]. 北京: 北京科技大学, 2019. Zhu Qintian. Effect of the control of carbides on the sharpness of knives made of 8Cr13MoV steel[D]. Beijing: University of Science and Technology Beijing, 2019. [2]周 伟, 王亮亮, 韩 啸, 等. 高级刀剪材料的优化配料与成分控制[J]. 南方金属, 2013(1): 48-51. Zhou Wei, Wang Liangliang, Han Xiao, et al. Optimization of the ingredients and the composition control for advanced knife and forfex material[J]. Southern Metals, 2013(1): 48-51. [3]胡跃均. 新型不锈钢刀剪材料的研发[D]. 重庆: 重庆大学, 2008. Hu Yuejun. Research and development of new stainless steel for chopping knives and scissors[D]. Chongqing: Chongqing University, 2008. [4]Qu Y, Xing J, Zhi X, et al. Effect of cerium on the as-cast microstructure of a hypereutectic high chromium cast iron[J]. Materials Letters, 2008, 62(17/18): 3024-3027. [5]Hou Y, Wang Y, Pan Z, et al. Influence of rare earth nanoparticles and inoculants on performance and microstructure of high chromium cast iron[J]. Journal of Rare Earths, 2012, 30(3): 283-288. [6]陈振湘, 徐晓嫦, 屈 啸, 等. 变质处理及热处理对高铬铸铁组织与性能的影响[J]. 热处理, 2011, 26(4): 35-39. Chen Zhenxiang, Xu Xiaochang, Qu Xiao, et al. Effect of modification and heat treatment on microstructure and properties of high-chromium cast iron[J]. Heat Treatment, 2011, 26(4): 35-39. [7]宗 攀, 张覃轶, 孙 伟, 等. 热处理工艺对大马士革VG10钢组织和性能的影响[J]. 金属热处理, 2018, 43(11): 117-122. Zong Pan, Zhang Qinyi, Sun Wei, et al. Effect of heat treatment process on microstructure and mechanical properties of damascus VG10 steel[J]. Heat Treatment of Metals, 2018, 43(11): 117-122. [8]岳丽杰. Cu-P-RE耐候钢中稀土行为作用及机理的研究[D]. 沈阳: 东北大学, 2006. Yue Lijie. The research of behavior and effect and mechanism of rare earths in Cu-P-RE weathering steel[D]. Shenyang: Northeastern University, 2006. [9]Yu Wentao, Li Jing, Shi Chengbin, et al. Effect of titanium on the microstructure and mechanical properties of high-carbon martensitic stainless steel 8Cr13MoV[J]. Metals, 2016, 6(8): 193-208. [10]Yu L L, Chih C L, Tsung H T, et al. Microstructure and mechanical properties of 0.63C-12.7Cr martensitic stainless steel during various tempering treatments[J]. Advanced Materials Research, 2010, 25(4): 246-248. [11]Zhou Bin, Shen Yu, Chen Jun, et al. Breakdown behavior of eutectic carbide in high speed steel during hot compression[J]. Journal of Iron and Steel Research, Interational, 2011, 18(1): 41-48. [12]Zhou X, Fang F, Li G, et al. Morphology and properties of M2C eutectic carbides in AISI M2 steel[J]. ISIJ International, 2010, 50(8): 1151-1157. [13]Zhang X, Wei L, Sun D, et al. The transformation of carbides during austenization and its effect on the wear resistance of high speed steel rolls[J]. Metallurgical and Materials Transactions A, 2007, 38(3): 499-505. [14]Aksoy M, Kuzucu V, Korkut M H. The influence of strong carbide-forming elements and homogenization on the wear resistance of ferritic stainless steel[J]. Wear, 1997, 211(2): 265-270. [15]Aksoy M, Kuzucu V, Korkut M H. The effect of strong carbide-forming elements on the adhesive wear resistance of ferritic stainless steel[J]. Wear, 2001, 249(8): 639-646. [16]崔忠圻, 覃耀春. 金属学与热处理[M]. 2版. 北京: 机械工业出版社, 2007. [17]刘天琦, 冯抗屯, 陈天运, 等. 30Cr2MnSiNi2WMo钢组织研究[J]. 金属热处理, 2015, 40(6): 65-68. Liu Tianqi, Feng Kangtun, Chen Tianyun, et al. Microstructure of 30Cr2MnSiNi2WMo steel[J]. Heat Treatment of Metals, 2015, 40(6): 65-68. [18]肖纪美. 不锈钢的金属学问题[M]. 北京: 冶金工业出版社, 1983. |