[1]李文明, 罗德福, 韩瑞鹏, 等. 可控离子渗入工艺对304不锈钢组织和耐磨抗蚀性能的影响[J]. 金属热处理, 2019, 44(9): 177-181. Li Wenming, Luo Defu, Han Ruipeng, et al. Effect of programmable ion permeation process on microstructure and anti-wear anti-corrosion properties of 304 stainless steel[J]. Heat Treatment of Metals, 2019, 44(9): 177-181. [2]冯 琼. 先进高强钢强韧化微观机理研究[D]. 杭州: 浙江大学, 2015. [3]南雲道彦. 钢的氢脆的新研究方向[J]. 热处理, 2010, 25(3): 1-6. Michihiko Nagumo. Turning of the research direction on hydrogen embrittlement of steels[J]. Heat Treatment, 2010, 25(3): 1-6. [4]高学镕, 李继森, 刘沃恒. 稳定奥氏体不锈钢的氢脆[J]. 中国腐蚀与防护学报, 1984, 4(3): 213-217. Gao Xuerong, Li Jisen, Liu Woheng. Hydrogen embrittlement of stable austentic stainless steel[J]. Journal of Chinese Society of Corrosion and Protection, 1984, 4(3): 213-217. [5]范宇恒. 不锈钢微观组织结构对其氢脆性能的影响[D]. 沈阳: 中国科学技术大学, 2019. [6]黄建宁, 徐掌印, 富晓阳, 等. 敏化处理对含氮奥氏体不锈钢抗腐蚀性能的影响[J]. 金属热处理, 2019, 44(5): 52-56. Huang Jianning, Xu Zhangyin, Fu Xiaoyang, et al. Effect of sensitization treatment on corrosion resistance of nitrogen-containing austenitic stainless steel[J]. Heat Treatment of Metals, 2019, 44(5): 52-56. [7]彭 成, 黄福祥, 梁 爽, 等. 固溶处理温度对高硅锰铬镍奥氏体不锈钢晶间腐蚀的影响[J]. 金属热处理, 2019, 44(6): 128-132. Peng Cheng, Huang Fuxiang, Liang shuang, et al. Effect of solution treatment temperature on intergranular corrosion of high silicon manganese chromium-nickel austinitic stainless steel[J]. Heat Treatment of Metals, 2019, 44(6): 128-132. [8]Bak S, Abro M, Lee D. Effect of hydrogen and strain-induced martensite on mechanical properties of AISI 304 stainless steel[J]. Metals, 2016, 6(7): 169. [9]Park I J, Jung J G, Jo S Y, et al. The effect of pre-strain on the resistance to hydrogen embrittlement in 316L austenitic stainless steel[J]. Materials Transactions, 2014, 55(6): 964-970. [10]Li X, Gong B, Deng C, et al. Failure mechanism transition of hydrogen embrittlement in AISI 304 K-TIG weld metal under tensile loading[J]. Corrosion Science, 2018, 130: 241-251. [11]蒋 旺, 巩建鸣, 王艳飞, 等. 电化学充氢前后304L奥氏体不锈钢的塑性对比[J]. 机械工程材料, 2012, 36(2): 28-31, 95. Jiang Wang, Gong Jianming, Wang Yanfei, et al. Plasticity comparison of 304L austenitic stainless steel before and after electrochemical hydrogen charging[J]. Materials for Mechanical Engineering, 2012, 36(2): 28-31, 95. [12]徐 跃, 赵竹第, 刘艳华, 等. 氢对非稳定奥氏体不锈钢的影响[J]. 吉林大学学报, 2006, 44(6): 980-983. Xu Yue, Zhao Zhudi, Liu Yanhua, et al. Effect of hydrogen on unstable austenitic stainless steel[J]. Journal of Jilin University, 2006, 44(6): 980-983. [13]周成双, 刘辉云, 张 林. α′马氏体对 304 不锈钢氢脆行为的影响[J]. 浙江工业大学学报, 2019, 47(3): 329-333. Zhou Chengshuang, Liu Huiyun, Zhang Lin. Effects of α′ martensite on embrittlement of 304 stainless steels[J]. Journal of Zhejiang University of Technology, 2019, 47(3): 329-333. [14]Milella P P. Fatigue and Corrosion in Metals[M]. Milano: Springer, 2013: 689-729. [15]Wang Y, Wu X, Li X, et al. Combined effects of prior plastic deformation and sensitization on hydrogen embrittlement of 304 austenitic stainless steel[J]. International Journal of Hydrogen Energy, 2019, 44(13): 7014-7031. |