[1] Zhao J, Jiang Z. Thermomechanical processing of advanced high strength steels[J]. Progress in Materials Science, 2018, 94: 174-242. [2] Lee S, Estrin Y, Cooman B C. Constitutive modeling of the mechanical properties of V-added medium manganese TRIP steel[J]. Metallurgical and Materials Transactions A, 2013, 44(7): 3136-3146. [3] Latypov M I, Shin S, Cooman B D, et al. Micromechanical finite element analysis of strain partitioning in multiphase medium manganese TWIP+TRIP steel[J]. Acta Materialia, 2016, 108: 219-228. [4] Ma Y. Medium-manganese steels processed by austenite-reverted-transformation annealing for automotive applications[J]. Materials Science and Technology, 2017, 33 (15): 1713-1727. [5] Lee Seawoong, Lee Kyooyoung, De Cooman B C, et al. Observation of the TWIP+TRIP plasticity-enhancement mechanism in Al-added 6 wt pct medium Mn steel[J]. Metallurgical and Materials Transactions A, 2015, 46(6): 2356-2363. [6] Lee Seawoong, De Cooman B C. On the selection of the optimal intercritical annealing temperature for medium Mn TRIP steel[J]. Metallurgical and Materials Transactions A, 2013, 44: 5018-5024. [7] Kang S, Hofer R W, Speer J G, et al. Intercritical annealing response of medium manganese steels having different carbon concentrations[J]. Steel Research International, 2018, 89(9). [8] Hu J, Zhang J M, Sun G S, et al. High strength and ductility combination in nano-/ultrafine-grained medium-Mn steel by tuning the stability of reverted austenite involving intercritical annealing[J]. Springer US, 2019, 54(8). [9] Li X, Song R, Zhou N,et al. An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated by intercritical annealing[J]. Scripta Materialia, 2018, 154: 30-33. [10] Chen J, Ren J, Liu Z,et al. 1.0 GPa low carbon medium Mn heavy steel plate with excellent ductility[J]. Materials Science and Technology, 2019, 35(17): 2143-2149. [11] Nakada N, Mizutani K, Tsuchiyama T, et al. Difference in transformation behavior between ferrite and austenite formations in medium manganese steel[J]. Acta Materialia, 2014, 65: 251-258. [12] Lee S, Shin S, Kwon M, et al. Tensile properties of medium Mn steel with a bimodal UFG α+γ and coarse δ-ferrite microstructure, Metallurgical and Materials Transactions A, 2017, 48(4): 1678-1700. [13] Cullity B D, Stock S R. Elements of X-ray diffraction, 3rd edition[J]. Prentice-Hall, 2001. [14] Moor E D, Matlock D K, Speer J G, et al. Merwin, austenite stabilization through manganese enrichment[J]. Scripta Materialia, 2011, 64(2): 185-188. [15] Kang S, Speer J G, Krizan D, et al. Prediction of tensile properties of intercritically annealed Al-containing 0.19C-4.5Mn(wt%) TRIP steels[J]. Materials and Design, 2016, 97(2): 138-146. [16] 王润勋, 王宝峰, 李 岩, 等. 0.2C-5Mn-1.5Al中锰TRIP钢的显微组织及力学性能[J]. 金属热处理, 2020, 45(4): 63-68. Wang Runxun, Wang Baofeng, Li Yan, et al. Microstructure and mechanical properties of 0.2C-5Mn-1.5Al medium manganese TRIP steel[J]. Heat Treatment of Metals, 2020, 45(4): 63-68. [17] Luo H, Dong H. New ultrahigh-strength Mn-alloyed TRIP steels with improved formability manufactured byintercritical annealing[J]. Materials Science and Engineering A, 2015, 626(12): 207-212. [18] Zhang Y, Hui W, Zhao X, et al. Effect of reverted austenite fraction on hydrogen embrittlement of TRIP-aided medium Mn steel (0.1C-5Mn)[J]. Engineering Failure Analysis, 2019, 97: 605-616. [19] 李激光, 隋 欣, 张 丹, 等. 退火温度对冷轧超细晶亚稳钢组织性能的影响[J]. 材料科学与工程学报, 2015, 33(4): 537-541. Li Jiguang, Sui Xin, Zhang Dan, et al. Effect of annealing time on microstructure and properties of hot rolled ultrafine grained metastable steel[J]. Journal of Materials Science and Engineering, 2015, 33(4): 537-541. [20] 定 巍, 龚志华, 唐 荻, 等. 低硅含铝TRIP钢残余奥氏体变形过程中稳定性研究[J]. 材料工程, 2013 (12): 68-73. Ding Wei, Gong Zhihua, Tang Di, et al. Stability of retained austenite of low Si containing Al TRIP steel during deformation[J]. Journal of Materials Engineering, 2013(12): 68-73. |