[1] Msuyama F. History of power plants and progress in heat resistant steels[J]. ISIJ International, 2007, 41(6): 612-625. [2] Qian Jiong, Chen Changfeng, Yu Haobo, et al. The influence and mechanism of the precipitate/austenite C-enrichment on the intergranular corrosion sensitivity in 310S stainless steel[J]. Corrosion Science, 2016, 111: 352-361. [3] Zhang Z, Hu Z, Tu H, et a1. Microstructure evolution in HR3C austenitic steel during long-term creep at 650 ℃[J]. Materials Science and Engineering A, 2017, 681(10): 74-84. [4] Zinkle S J, Was G S. Materials challenges in nuclear energy[J]. Acta Materialia, 2013, 61(3): 735-758. [5] 杨照明, 韩静涛, 刘 靖, 等. 奥氏体耐热不锈钢310S的抗高温氧化性能研究[J]. 热加工工艺, 2006, 35(14): 33-34, 57. Yang Zhaoming, Han Jingtao, Liu Jing, et al. Study on oxidation resistance of 310S austenitic stainless steel[J]. Hot Working Technology, 2006, 35(14): 33-34, 57. [6] 李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001. [7] Yashar Behnamian, Amir Mostafaei, Alireza Kohandehghan, et al. Characterization of oxide scales grown on alloy 310S stainless steel after long term exposure to supercritical water at 500 ℃[J]. Materials Characterization, 2016, 120: 273-284. [8] Yan J, Gu Y, Sun F, et al. Evolution of microstructure and mechanical properties of a 25Cr-20Ni heat resistant alloy after long-term service[J]. Materials Science and Engineering A, 2016, 675(15): 289-298. [9] 杜宝帅, 魏玉忠, 张忠文, 等. 高温服役4.2万小时超超临界机组用HR3C钢组织与性能[J]. 材料热处理学报, 2014, 35(12): 84-89. Du Baoshuai, Wei Yuzhong, Zhang Zhongwen, et al. Microstructure and properties of HR3C steel used in ultra-supercritical units after 42 000 h exposure to elevated temperature[J]. Transactions of Materials and Heat Treatment, 2014, 35(12): 84-89. [10] Tavares S S M, Moura V, Da Costa V C, et a1. Microstructural changes and corrosion resistance of AISI 310S steel exposed to 600-800 ℃[J]. Materials Characterization, 2009, 60(6): 573-578. [11] Bai X, Pan J, Chen G, et a1. Effect of high temperature aging on microstructure and mechanical properties of HR3C heat resistant steel[J]. Materials Science and Technology, 2014, 30(2): 205-210. [12] Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels[J]. Materials Science and Engineering R: Reports, 2009, 65(4-6): 39-104. [13] Lai J K, Wickens A. Microstructural changes and variations in creep ductility of 3 casts of type 316 stainless steel[J]. Acta Metallurgica, 1979, 27(2): 217-230. [14] Jiao Y N, Zheng W Y, Guzonas D, et al. Microstructure instability of candidate fuel cladding alloys: Corrosion and stress corrosion[J]. JOM, 2016, 68: 485-489. [15] 王敬忠, 刘正东, 程世长, 等. 固溶态S31042钢高温塑性波动大的原因分析[J]. 钢铁, 2012, 47(1): 60-64. Wang Jingzhong, Liu Zhengdong, Cheng Shichang, et al. Analysis on big fluctuation in elevated temperature ductility of solution S31042 steel[J]. Iron and Steel, 2012, 47(1): 60-64. [16] Sourmail T. Precipitation in creep resistant austenitic stainless steels[J]. Materials Science and Technology, 2001, 17(1): 1-14. [17] 邢 佳, 卫英慧, 侯利锋, 等. HR3C不锈钢时效过程中铌的析出规律及其对性能的影响[J].钢铁研究学报, 2014, 26(12): 54-59. Xing Jia, Wei Yinghui, Hou Lifeng, et al. Rule for niobium precipitation during aging treatment and its influence on properties of stainless steel HR3C[J]. Journal of Iron and Steel Research, 2014, 26(12): 54-59. [18] 方园园, 赵 杰, 李晓娜. HR3C钢高温时效过程中的析出相[J]. 金属学报, 2010, 46(7): 844-849. Fang Yuanyuan, Zhao Jie, Li Xiaona. Precipitates in HR3C steel aged at high temperature[J]. Acta Metallurgica Sinica, 2010, 46(7): 844-849. [19] Sourmail T, Bhadeshia H K D H. Microstructural evolution in two variants of NF709 at 1023 and 1073 K[J]. Metallurgical and Materials Transactions A, 2005, 36(1): 23-34. |