[1] 安佰锋. 经济型高强韧贝/马复相钢的研究与应用[D]. 北京: 北京交通大学, 2016. An Baifeng. Research and application on low-cost high strength and toughness of bainite/martensite multiphase steel[D]. Beijing: Beijing Jiaotong University, 2016. [2] 陈梦圆, 刘 卓, 吴 润, 等. 配分时间对Q&P钢组织及性能的影响[J]. 金属热处理, 2020, 45(9): 62-65. Chen Mengyuan, Liu Zhuo, Wu Run, et al. Effect of partitioning time on microstructure and properties of Q&P steel[J]. Heat Treatment of Metals, 2020, 45(9): 62-65. [3] 朱 飞. 高强塑积热轧双相钢组织调控研究[D]. 马鞍山: 安徽工业大学, 2017. Zhu Fei. The study of microstructure control on hot-rolled dual-phase steel with high product of strength and elongation[D]. Ma'anshan: Anhui University of Technology, 2017. [4] Dong Han. High performance steels: Initiative and practice[J]. Science China(Technological Sciences), 2012, 55(7): 1774-1790. [5] 马后逾. 1200 MPa级低合金复相钢的组织多尺度细化与性能[D]. 马鞍山: 安徽工业大学, 2013. Ma Houyu. Multi-scale microstructure refinement and mechanical properties of 1200 MPa low alloy multi-phase steels[D]. Ma'anshan: Anhui University of Technology, 2013. [6] 张 超, 郭 辉, 王家星, 等. 等温淬火温度对超细贝氏体钢组织及耐磨性的影响[J]. 工程科学学报, 2018, 40(12): 1502-1509. Zhang Chao, Guo Hui, Wang Jiaxing, et al. Effect of austempering temperature on the microstructure and wear resistance of ultrafine bainitic steel[J]. Chinese Journal of Engineering, 2018, 40(12): 1502-1509. [7] Liu K, He T Q, Wan X L, et al. The effect of isothermal holding on the microstructures and mechanical properties of a low carbon alloy steel[J]. Materials Characterization, 2011, 62(3): 340-345. [8] 陈建志. 贝氏体/马氏体复相EA4T钢微观组织与疲劳性能研究[D]. 沈阳: 东北大学, 2016. Chen Jianzhi. Microstructures and fatigue properties of bainite/martensite EA4T steels[D]. Shenyang: Northeastern University, 2016. [9] Wang K, Tan Z, Gao G, et al. Microstructure-property relationship in bainitic steel: The effect of austempering[J]. Materials Science and Engineering A, 2016, 675: 120-127. [10] Matas S, Hehemann R F. Retained austenite and the tempering of martensite[J]. Nature, 1960, 187(4738): 685-686. [11] 钟 宁. 高强度Q&P钢和Q-P-T钢的研究[D]. 上海: 上海交通大学, 2009. Zhong Ning. Research on high strength Q&P and Q-P-T steels[D]. Shanghai: Shanghai Jiao Tong University, 2009. [12] Speer J G, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611-2622. [13] Matlock D K, Brautigam V E, Speer J G, et al. Application of the quenching and partitioning (Q&P) process to amedium-carbon, high-Si microalloyedbar steel[J]. Materials Science Forum, 2003, 426-432: 1089-1094. [14] Clarke A J, Speer J G, Miller M K, et al. Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment[J]. Acta Materialia, 2008, 56(1): 16-22. [15] 王存宇, 解西强, 刘 苏, 等. Q&P工艺研究现状[J]. 钢铁研究学报, 2009, 21(9): 6-11. Wang Cunyu, Jie Xiqiang, Liu Su, et al. Present status of quenching and partitioning process[J]. Journal of Iron and Steel Research, 2009, 21(9): 6-11. [16] Speer J G, Edmonds D V, Rizoo F C, et al. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3/4): 219-237. [17] Hillert M, Höglund L,Ågren J. Escape of carbon from ferrite plates in austenite[J]. Acta Metallurgica et Materialia, 1993, 41(7): 1951-1957. [18] Hillert M,Ågren J. On the definitions of paraequilibrium and orthoequilibrium[J]. Scripta Materialia, 2004, 50(5): 697-699. [19] 吴 化. 低合金高强度高塑性复相钢材的成分设计[D]. 上海: 东华大学, 2007. Wu Hua. Composition design of low alloy high strength and plasticity complex phase steels[D]. Shanghai: Donghua University, 2007. [20] Zhong N, Wang X, Rong Y, et al. Interface migration between martensite and austenite during quenching and partitioning (Q&P) process[J]. Journal of Materials Science and Technology, 2006, 22(6): 751-754. [21] 徐祖耀. 淬火-碳分配-回火(Q-P-T)工艺浅介[J]. 金属热处理, 2009, 34(6): 1-8. Xu Zuyao. A brief introduction to quenching-partitioning-tempering(Q-P-T) process[J]. Heat Treatment of Metals, 2009, 34(6): 1-8. [22] 刘成龙. 300M钢的Q-P和Q-P-T热处理工艺研究[D]. 沈阳: 东北大学, 2014. Liu Chenglong. Studies on the Q-P and Q-P-T heat treatment processes of 300M steels[D]. Shenyang: Northeastern University, 2014. [23] 郭元钧, 黄继富. 65Mn钢马氏体/下贝氏体复相组织和性能[J]. 南昌大学学报, 1987, 9(2): 67-74. Guo Yuanjun, Huang Jifu. The martensite/lower bainite duplex structure of steel 65Mn and its mechanical properties[J]. Journal of Nanchang University, 1987, 9(2): 67-74. [24] 王 琦, 卢 军, 邹忠华. Cr12MoV 钢马氏体/贝氏体复相热处理工艺研究[J]. 金属热处理, 2011, 36(10): 63-65. Wang Qi, Lu Jun, Zou Zhonghua. Heat treatment of martensite/bainite dual phase of Cr12MoV steel[J]. Heat Treatment of Metals, 2011, 36(10): 63-65. [25] 杨福宝, 白秉哲, 刘东雨, 等. 无碳化物贝氏体/马氏体复相高强度钢的组织与性能[J]. 金属学报, 2004, 40(3): 296-300. Yang Fubao, Bai Bingzhe, Liu Dongyu, et al. Microstructure and properties of a carbide-free bainite/martensiteultra-high strength steel[J]. Acta Metallurgiga Sinica, 2004, 40(3): 293-300. [26] 许伯藩. 55SiMnVB钢复相热处理的组织与性能的研究[J]. 武汉钢铁学院学报, 1987(3): 34-41. Xu Bofan. A study on the texture and performance of the 55SiMnVB steel during heterogeneous heat treatment[J]. Journal of Wuhan University of Science and Technology, 1987(3): 34-41. [27] 周 莲, 沈国兴, 徐 杰. 中碳低合金钢的马氏体与下贝氏体复相组织研究[J]. 上海金属, 1988, 10(4): 36-41. [28] 郭元钧, 黄继富. 65Mn钢马氏体/下贝氏体复相组织的韧性和耐磨性[J]. 材料热处理学报, 1991, 12(1): 8-15. Guo Yuanjun, Huang Jifu. The toughness and wear resistance for the martensite-lower bainite dual phase structure of 65Mn steel[J]. Transactions of Materials and Heat Treatment, 1991, 12(1): 8-15. [29] 林化春. Cr12钢马氏体/贝氏体复相处理强韧化及应用[J]. 金属热处理, 1997, 26(5): 11-12, 18. Lin Huachun. Strengthening and toughening technique and application on (M/B) dual-phase heat treating of Cr12 steel[J]. Heat Treatment of Metals, 1997, 26(5): 11-12, 18. [30] Tomita Yoshiyuki, Okabayashi Kunio. Heat treatment for improvement in lower temperature mechanical properties of 0.40 pct C-Cr-Mo ultrahigh strength steel[J]. Metallurgical Transactions A, 1983, 14(11): 2387-2393. [31] Tomita Yoshiyuki, Okabayashi Kunio. Improvement in lower temperature mechanical properties of 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel with the second phase lower bainite[J]. Metallurgical Transactions A, 1983, 14(2): 485-492. [32] Tomita Yoshiyuki, Okabayashi Kunio. Mechanical properties of 0.40 pct C-Ni-Cr-Mo high strength steel having a mixed structure of martensite and bainite[J]. Metallurgical Transactions A, 1985, 16(1): 73-82. [33] 秦晓峰, 朱洪武, 周乐育, 等. FF710钎具钢下贝氏体/马氏体复相组织的控制[J]. 材料热处理学报, 2013, 34(S2): 111-116. Qin Xiaofeng, Zhu Hongwu, Zhou Leyu, et al. Control of lower bainite/martensite duplex structure of the FF710 drill steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(S2): 111-116. [34] Wang K, Tan Z, Gu K, et al. Effect of deep cryogenic treatment on structure-property relationship in an ultrahigh strength Mn-Si-Cr bainite/martensite multiphase rail steel[J]. Materials Science and Engineering A, 2017, 684: 559-566. [35] 李玲慧, 周青春, 计天予, 等. 高硅马氏体型热作模具钢贝氏体等温工艺的研究[J]. 上海金属, 2012, 34(5): 20-24. Li Linghui, Zhou Qingchun, Ji Tianyu, et al. Bainite isothermal process for martensitic hot working die steel containing high Si content[J]. Shanghai Metals, 2012, 34(5): 20-24. [36] Dan W, Zhang W, Liu F. Constitutive model for multi-phase high strength steels[J]. Procedia Engineering, 2014, 81: 1204-1209. [37] 孙培祯, 文翠娥, 赵建生, 等. 马氏体/下贝氏体复相热处理对GD钢强韧性的影响[J]. 材料热处理学报, 1991, 12(3): 1-5. Sun Peizhen, Wen Cui'e, Zhao Jiansheng, et al. Effect of dual phase heat treatment of martensite lower bainite on strength and toughness of GD steel[J]. Transactions of Materials and Heat Treatment, 1991, 12(3): 1-5. [38] 解西强, 高文涛, 时 捷, 等. Q-P淬火和分配工艺对25Si2Ni3钢组织和力学性能的影响[J]. 特殊钢, 2008, 163(5): 56-58. Jie Xiqiang, Gao Wentao, Shi Jie, et al. Effect of quenching and partition (Q&P) process on structure and mechanical properties of steel 25Si2Ni3[J]. Special Steel, 2008, 163(5): 56-58. [39] 刘敬广. 具有TRIP效应的热轧Q&P钢组织与力学性能研究[D]. 济南: 山东建筑大学, 2013. Liu Jingguang. Research on microstructures and mechanical properties of hot rolled quenching and partitioning steel with TRIP effect[J]. Jinan: Shandong Jianzhu University, 2013. [40] Paravicini E Bagliani, Santofimia M J, Zhao L, et al. Microstructure, tensile and toughness properties after quenching and partitioning treatments of a medium-carbon steel[J]. Materials Science and Engineering A, 2013, 559: 486-495. [41] Pierce D T, Coughlin D R, Williamson D L, et al. Quantitative investigation into the influence of temperature on carbide and austenite evolution during partitioning of a quenched and partitioned steel[J]. Scripta Materialia, 2016, 121: 5-9. [42] Wang Zijian, Wang Kai, Liu Yong, et al. Multi-scale simulation for hot stamping quenching & partitioning process of high-strength steel[J]. Journal of Materials Processing Technology, 2019, 269: 150-162. [43] Wang X D, Guo Z H, Rong Y H. Mechanism exploration of an ultrahigh strength steel by quenching-partitioning-tempering process[J]. Materials Science and Engineering A, 2011, 529: 35-40. [44] Wang X D, Zhong N, Rong Y H, et al. Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process[J]. Journal of Materials Research, 2009, 24(1): 260-267. [45] Zhong N, Wang X D, Wang L, et al. Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching-partitioning-tempering process[J]. Materials Science and Engineering A, 2008, 506(1): 111-116. [46] 黎 雨, 李 伟, 金学军. 淬火-配分-回火QPT钢的研究进展[J]. 中国材料进展, 2019, 38(7): 631-640, 650. Li Yu, Li Wei, Jin Xuejun. Review of quenching-partitioning-tempering (QPT) steels[J]. Materials China, 2019, 38(7): 631-640, 650. [47] 张 柯. 高强塑积Q-P-T钢及其强塑性机制的研究[D]. 上海: 上海交通大学, 2011. Zhang Ke. High product of strength and elongation of steels treated by quenching-partitioning-tempering process and the mechanism of strength and ductility[D]. Shanghai: Shanghai Jiao Tong University, 2011. [48] Zhang Ke, Zhang Meihan, Guo Zhenghong, et al. A New effect of retained austenite on ductility enhancement in high-strength quenching-partitioning-tempering martensitic steel[J]. Materials Science and Engineering A, 2011, 528(29): 8486-8491. [49] Bhadeshia H K D H. Computational design of advanced steels[J]. Scripta Materialia, 2014, 70: 12-17. [50] Zheng Hui, Li Wei, Gong Yu. Microstructure-based finite element modeling of effect of metastable austenite on mechanical properties of quenching and partitioning (Q&P) 980 steel[J]. Journal of Iron and Steel Research, International, 2018, 25(11): 1140-1148. [51] Li Y, Li W, Liu W, et al. The austenite reversion and Co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel[J]. Acta Materialia, 2018, 146: 126-141. [52] Li Y, Li W, Min N, et al. Effects of hot/cold deformation on the microstructures and mechanical properties of ultra-low carbon medium manganese quenching-partitioning-tempering steels[J]. Acta Materialia, 2017, 139: 96-108. [53] 戎咏华, 陈乃录. 淬火-分配-回火工艺和多循环淬火-分配-回火工艺[J]. 热处理, 2011, 26(5): 1-10. Rong Yonghua, Chen Nailu. Quenching-partitioning-tempering and multicycle quenching-partioning-tempering processes[J]. Heat Treatment, 2011, 26(5): 1-10. [54] 吕宇鹏, 李 阳. 钢的淬火-分配(Q-P)处理工艺科技发展报告[R] //山东省科学技术协会. 山东省材料发展报告2010~2011. 北京: 中国建材工业出版社, 2012: 360-365. [55] 李 阳, 吕宇鹏, 李士同. 钢的淬火-分配(Q-P)处理研究现状与进展[J]. 金属热处理, 2010, 35(4): 65-68. Li Yang, Lü Yupeng, Li Shitong. Study status and process of quenching and portioning (Q-P) heat treatment for steel[J]. Heat Treatment of Metals, 2010, 35(4): 65-68. |