[1] Choi Y S, Shim J J, Kim J G. Effects of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water[J]. Journal of Alloys and Compounds, 2005, 391(1/2): 162-169. [2] Morcillo M, Díaz I, Cano H, et al. Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts[J]. Construction and Building Materials, 2019, 213: 723-737. [3] 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(9): 1247-1254. Liu Yuwei, Zhao Hongtao, Wang Zhenyao. Initial corrosion behavior of carbon steel and weathering steel in Nansha marine atmosphere[J]. Acta Metallurgica Sinica, 2020, 56(9): 1247-1254. [4] Morcillo M, Díaz I, Cano H, et al. Atmospheric corrosion of weathering steels. Overview for engineers. Part II: Testing, inspection, maintenance[J]. Construction and Building Materials, 2019, 222: 750-765. [5] Zhang Yu, Huang Feng, Hu Qian, et al. Effect of micro-phase electrochemical activity on the initial corrosion dynamics of weathering steel[J]. Materials Chemistry and Physics, 2019, 241: 122045. [6] Su Han, Wang Jian, Du Jinsheng. Fatigue behavior of uncorroded non-load-carrying bridge weathering steel Q345qDNH fillet welded joints[J]. Journal of Constructional Steel Research, 2020, 164: 105789. [7] 刘 悦, 屠卡滨, 吴红艳, 等. 低碳V-N-Cr微合金化耐候钢的连续冷却转变曲线[J]. 材料热处理学报, 2019, 40(8): 131-137. Liu Yue, Tu Kabin, Wu Hongyan, et al. Continuous cooling transformation curve of low carbon V-N-Cr microalloyed weathering steel[J]. Transactions of Materials and Heat Treatment, 2019, 40(8): 131-137. [8] 姚纪坛, 孙 力, 安会龙, 等. 低屈强比高强耐候钢的CCT曲线及性能[J]. 金属热处理, 2020, 45(6): 104-108. Yao Jitan, Sun Li, An Huilong, et al. CCT curves and properties of low yield rario high strength weathering steel[J]. Heat Treatment of Metals, 2020, 45(6): 104-108. [9] Yi H L. Full pearlite obtained by slow cooling in medium carbon steel[J]. Materials Science and Engineering A, 2010, 527(29/30): 7600-7604. [10] 朱思远, 于 强, 陈克坚, 等. 某耐候钢桥锈层稳定化处理技术的探索[J]. 材料保护, 2020, 53(6): 139-143. Zhu Siyuan, Yu Qiang, Chen Kejian, et al. Exploration on rust layer stabilization treatment technology for a weathering steel bridge[J]. Materials Protection, 2020, 53(6): 139-143. [11] Fan Yueming, Liu Wei, Li Shimin, et al. Evolution of rust layers on carbon steel and weathering steel in high humidity and heat marine atmospheric corrosion[J]. Journal of Materials Science and Technology, 2020, 39(4): 185-194. [12] 马龙腾, 王彦锋, 杨永达, 等. 轧制工艺对460 MPa级低屈强比耐火耐候钢组织性能的影响[J]. 金属热处理, 2020, 45(9): 66-70. Ma Longteng, Wang Yanfeng, Yang Yongda, et al. Effect of rolling parameters on microstructure and mechanical properties of 460 MPa grade low yield ratio fire-resistant weathering steel[J]. Heat Treatment of Metals, 2020, 45(9): 66-70. |