[1] Li K, Dong X P, Huang M J, et al. Fretting friction properties of laser surface texture microfilaments[J]. Industrial Lubrication and Tribology, 2019, 72(3): 427-431. [2] Miranda G, Faria S, Bartolomeu F, et al. Predictive models for physical and mechanical properties of 316L stainless steel produced by selective laser melting[J]. Materials Science and Engineering A, 2016, 657: 43-56. [3] DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components - Process, structure and properties[J]. Progress in Marterials Science, 2018, 92: 112-224. [4] Santos E C, Shiomi M, Osakada K, et al. Rapid manufacturing of metal components by laser forming[J]. International Journal of Machine Tools and Manufacture, 2006, 46(12/13): 1459-1468. [5] 肖美立, 昝 林, 柯林达, 等. 退火工艺对激光选区熔化成形Ti6Al4V合金组织及室温力学性能的影响[J]. 金属热处理, 2020, 45(8): 108-112. Xiao Meili, Zan Lin, Ke Linda, et al. Effect of annealing process on microstructure and room temperature mechanical properties of selective laser melted Ti6Al4V alloy[J]. Heat Treatment of Metals, 2020, 45(8): 108-112. [6] Liu Y J, Li S J, Wang H L, et al. Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting[J]. Acta Materialia, 2016, 113: 56-67. [7] 马聪慧, 王长军, 沈 韬, 等. 选区激光熔化法制备的M2052锰铜合金的组织与性能[J]. 金属热处理, 2020, 45(8): 97-104. Ma Conghui, Wang Changjun, Shen Tao, et al. Microstructure and properties of M2052 Mn-Cu alloy prepared by selective laser melting method[J]. Heat Treatment of Metals, 2020, 45(8): 97-104. [8] Ganesh P, Giri R, Kaul R, et al. Studies on pitting corrosion and sensitization in laser rapid manufactured specimens of type 316L stainless steel[J]. Materials and Design, 2012, 39: 509-521. [9] Yadollahi A, Shamsaei N, Thompson S M, et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel[J]. Materials Science and Engineering A, 2015, 644: 171-183. [10] Kamariah M S I N, Harun W S W, Khalil N Z, et al. Effect of heat treatment on mechanical properties and microstructure of selective laser melting 316L stainless steel[J]. IOP Conference Series: Materials Science and Engineering, 2017, 257(1): 1-12. [11] Fergani O, Wold A B, Berto F, et al. Study of the effect of heat treatment on fatigue crack growth behavior of 316L stainless steel produced by selective laser melting[J]. Fatigue and Fracture of Engineering Materials and Structures, 2017, 41(5): 1102-1119. [12] Chen X H, Li J, Cheng X, et al. Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing[J]. Materials Science and Engineering A, 2017, 715: 307-314. [13] Kong D C, Ni X Q, Dong C F, et al. Anisotropy in the microstructure and mechanical property for the bulk and porous 316L stainless steel fabricated via selective laser melting[J]. Materials Letters, 2019, 235: 1-5. [14] 孙闪闪, 滕 庆, 程 坦, 等. 热处理对激光选区熔化GH3536合金组织演变规律的影响研究[J]. 机械工程学报, 2020, 56(21): 208-218. Sun Shanshan, Teng Qing, Cheng Tan, et al. Influence of heat treatment on microstructure evolution of GH3536 superalloy fabricated by selective laser melting[J]. Journal of Mechanical Engineering, 2020, 56(21): 208-218. [15] 边培莹. 热处理工艺对316L不锈钢粉末激光选区熔化成形的残余应力及组织的影响[J]. 材料热处理学报, 2019, 40(4): 90-97. Bian Peiying. Effect of heat treatment on residual stress and microstructure of 316L stainless steel powder formed by selective laser melting[J]. Transactions of Materials and Heat Treatment, 2019, 40(4): 90-97. [16] 赖 莉, 徐震霖, 何宜柱. 热处理对SLM 18Ni300马氏体时效钢组织及腐蚀性能的影响[J]. 表面技术, 2019, 48(12): 328-335. Lai Li, Xu Zhenlin, He Yizhu. Effect of heat treatment on microstructure and corrosion properties of SLM 18Ni300 maraging steel[J]. Surface Technology, 2019, 48(12): 328-335. |