[1] 盛 欢, 王泽华, 邵 佳, 等. 高速列车制动盘材料的研究现状与展望[J]. 机械工程材料, 2016, 40(1): 1-5, 42. Sheng Huan, Wang Zehua, Shao Jia, et al. Research status and prospect of brake disc materials for high-speed train[J]. Materials for Mechanical Engineering, 2016, 40(1): 1-5, 42. [2] 汤忖江, 陈蕴博, 左玲立, 等. 高速列车制动盘材质应用现状和研究进展[J]. 材料导报, 2018, 32(S1): 443-448. Tang Cunjiang, Chen Yunbo, Zuo Lingli, et al. Application status and research progress of brake disc materials for high-speed train[J]. Materials Review, 2018, 32(S1): 443-448. [3] 王 飞, 李培署, 于钦顺. 高速列车锻钢制动盘的组织与性能[J]. 金属热处理, 2015, 40(12): 40-43. Wang Fei, Li Peishu, Yu Qinshun. Microstructure and properties of forged steel brake disc for high-speed trains[J]. Heat Treatment of Metals, 2015, 40(12): 40-43. [4] 牛悦丞, 李 芾, 李新荣, 等. 列车制动盘热分析现状与展望[J]. 机车电传动, 2019(6): 5-9, 14. Niu Yuecheng, Li Fu, Li Xinrong, et al. Status and prospect of thermal analysis of train brake discs[J]. Electric Drive for Locomotives, 2019(6): 5-9, 14. [5] 王 飞, 王风洲. 高速列车铸钢制动盘的组织与性能[J]. 金属热处理, 2018, 43(2): 133-136. Wang Fei, Wang Fengzhou. Microstructure and properties of cast steel brake disc for high-speed trains[J]. Heat Treatment of Metals, 2018, 43(2): 133-136. [6] TJ/CL 310—2014, 动车组制动盘暂行技术条件[S]. [7] 金林奎, 赵建国, 王春亮, 等. 套环铸钢件调质开裂失效分析[C]//第十一次全国热处理大会论文集. 2015: 553-556. [8] 江 红. 微观组织对热锻模具钢热疲劳性能的影响[D]. 长春: 吉林大学, 2001: 2-3. |