[1]Sato K, Tagawa K, Inoue Y. Spinodal decomposition and mechanical properties of an austenitic Fe-30wt%Mn-9wt%Al-0.9wt%C alloy[J]. Materials Science and Engineering A, 1989, 111: 45-50. [2]Choo W K, Kim J H, Yoon J C. Microstructural change in austenitic Fe-30.0wt%Mn-7.8wt%Al-1.3wt%C initiated by spinodal decomposition and its influence on mechanical properties[J]. Acta Materialia, 1997, 45(12): 4877-4885. [3]张磊峰, 宋仁伯, 赵 超, 等. 新型汽车用钢——低密度高强韧钢的研究进展[J]. 材料导报, 2014, 28(19): 111-118, 129. Zhang Leifeng, Song Renbo, Zhao Chao, et al. Research progress of new automotive steel-low-density high strength-toughness steel[J]. Materials Review, 2014, 28(19): 111-118, 129. [4]Lu W J, Zhang X F, Qin R S. κ-carbide hardening in a low-density high-Al high-Mn multiphase steel[J]. Materials Letters, 2015, 138: 96-99. [5]Song W, Zhang W, Appen J, et al. κ-phase formation in Fe-Mn-Al-C austenitic steels[J]. Steel Research International, 2015, 86(10): 1161-1169. [6]Haase C, Zehnder C, Ingendahl T, et al. On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel[J]. Acta Materialia, 2017, 122: 332-343. [7]Moon J, Park S J, Jang J H, et al. Atomistic investigations of κ-carbide precipitation in austenitic Fe-Mn-Al-C lightweight steels and the effect of Mo addition[J]. Scripta Materialia, 2017, 127: 97-101. [8]Rahnama A, Kotadia H, Clark S, et al. Nano-mechanical properties of Fe-Mn-Al-C lightweight steels[J]. Scientific Reports, 2018, 8(1): 9065. [9]陈兴品, 李文佳, 任 平, 等. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957. Chen Xingpin, Li Wenjia, Ren Ping, et al. Effects of C content on microstructure and properties of Fe-Mn-Al-C low-density steels[J]. Acta Metallurgica Sinica, 2019, 55(8): 951-957. [10]刘少尊, 厉 勇, 王春旭, 等. 固溶处理对Fe-Mn-Al-C系低密度钢组织与性能的影响[J]. 金属热处理, 2015, 40(9): 120-124. Liu Shaozun, Li Yong, Wang Chunxu, et al. Effects of solution treatment on microstructures and properties of Fe-Mn-Al-C low density steel[J]. Heat Treatment of Metals, 2015, 40(9): 120-124. [11]周占明, 唐 荻, 赵征志, 等. 固溶温度对Fe-22.8Mn-8.48Al-0.86C低密度钢组织及性能的影响[J]. 材料热处理学报, 2017, 38(9): 123-127. Zhou Zhanming, Tang Di, Zhao Zhengzhi, et al. Effect of solution temperature on microstructure and mechanical properties of Fe-22.8Mn-8.48Al-0.86C low density steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(9): 123-127. [12]魏学源, 尚 进, 陈 斌, 等. 固溶温度对热轧Fe-Mn-Al-C低密度高强钢组织和性能的影响[J]. 金属热处理, 2019, 44(8): 142-146. Wei Xueyuan, Shang Jin, Chen Bin, et al. Effect of solution treatment temperature on microstructure and properties of hot-rolled Fe-Mn-Al-C low density high strength steel[J]. Heat Treatment of Metals, 2019, 44(8): 142-146. [13]刘志伟, 王书勤, 罗凤亮. 固溶处理对汽车用Fe-Mn-Al-C高强低密度钢组织与力学性能的影响[J]. 热加工工艺, 2020, 49(18): 111-115, 118. Liu Zhiwei, Wang Shuqin, Luo Fengliang. Effects of solution treatment on microstructure and mechanical properties of Fe-Mn-Al-C high strength and low density steel for automobile[J]. Hot Working Technology, 2020, 49(18): 111-115, 118. [14]赵 婷, 孙佳振, 贾 鑫, 等. 固溶处理温度对Fe-Mn-Al-C铁素体基轻质钢耐蚀性能的影响[J]. 金属热处理, 2021, 46(4): 105-111. Zhao Ting, Sun Jiazhen, Jia Xin, et al. Influence of solution temperature on corrosion resistance of Fe-Mn-Al-C ferrite based light weight steel[J]. Heat Treatment of Metals, 2021, 46(4): 105-111. [15]刘少尊, 王春旭, 厉 勇, 等. 时效温度对固溶态Fe-Mn-Al-C低密度钢性能与析出相的影响[J]. 金属热处理, 2015, 40(11): 103-107. Liu Shaozun, Wang Chunxu, Li Yong, et al. Effect of aging temperature on properties and precipitation of Fe-Mn-Al-C low-density steel[J]. Heat Treatment of Metals, 2015, 40(11): 103-107. [16]彭世广, 宋仁伯, 王 威, 等. 热处理工艺对新型轻质奥氏体耐磨钢的组织与力学性能的影响[J]. 材料工程, 2016, 44(9): 24-31. Peng Shiguang, Song Renbo, Wang Wei, et al. Effect of heat treatments on microstructure and mechanical properties of novel light-mass austenitic wear-resistant steel[J]. Journal of Materials Engineering, 2016, 44(9): 24-31. [17]王 萍, 郭爱民, 侯清宇, 等. 时效态Fe-Mn-Al-C钢的性能和变形机制[J]. 材料研究学报, 2021, 35(3): 184-192. Wang Ping, Guo Aimin, Hou Qingyu, et al. Properties and deformation mechanism of aged Fe-Mn-Al-C steel[J]. Chinese Journal of Materials Research, 2021, 35(3): 184-192. [18]Liu D, Cai M, Ding H, et al. Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel[J]. Materials Science and Engineering A, 2018, 715: 25-32. [19]Wang Z, Lu W, Zhao H, et al. Formation mechanism of κ-carbides and deformation behavior in Si-alloyed FeMnAlC lightweight steels[J]. Acta Materialia, 2020, 198: 258-270. [20]Chen S, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels[J]. Progress in Materials Science, 2017, 89: 345-391. [21]Zambrano O A. A general perspective of Fe-Mn-Al-C steels[J]. Journal of Materials Science, 2018, 53(20): 14003-14062. [22]Inoue A, Kojima Y, Minemura T, et al. Microstructure and mechanical properties of ductile Ni3Al-type compound in Fe-(Ni, Mn)-Al-C systems rapidly quenched from melts[J]. Metallurgical Transactions A, 1981, 12(7): 1245-1253. [23]Choi Y W, Dong Z, Li W, et al. Predicting the stacking fault energy of austenitic Fe-Mn-Al (Si) alloys[J]. Materials and Design, 2020, 187: 108392. [24]Han K H, Yoon J C, Choo W K. TEM evidence of modulated structure in Fe-Mn-Al-C austenitic alloys[J]. Scripta Metallurgica, 1986, 20(1): 33-36. [25]Huetter L J, Stadelmaier H H. Ternary carbides of transition metals with aluminum and magnesium[J]. Acta Metallurgica, 1958, 6(5): 367-370. [26]Martin Palm G I. Experimental determination of phase equilibria in the Fe-Al-C system[J]. Intermetallics, 1995, 3(6): 443-454. [27]Jiménez J A, Frommeyer G. The ternary iron aluminum carbides[J]. Journal of Alloys and Compounds, 2011, 509(6): 2729-2733. [28]Noh J Y, Kim H. Ab initio calculations on the effect of Mn substitution in the κ-carbide Fe3AlC[J]. Journal of the Korean Physical Society, 2013, 62(3): 481-485. [29]Huang H G D, Kao P W. Effect of alloying additions on the κ phase precipitation in austenitic Fe-Mn-Al-C alloys[J]. Scripta Metall Mater, 1994(30): 499-504. [30]Ren P, Chen X P, Wang C Y, et al. Evolution of microstructure, texture and mechanical properties of Fe-30Mn-11Al-1.2C low-density steel during cold rolling[J]. Materials Characterization, 2021, 174: 111013. [31]Feng Y, Song R, Pei Z, et al. Effect of aging isothermal time on the microstructure and room-temperature impact toughness of Fe-24.8Mn-7.3Al-1.2C austenitic steel[J]. Journal of Technology and Science, 2018, 24: 1012-1023. [32]Kim C, Terner M, Hong H U, et al. Influence of inter/intra-granular κ-carbides on the deformation mechanism in lightweight Fe-20Mn-11.5Al-1.2C steel[J]. Materials Characterization, 2020, 161: 110142. [33]Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel[J]. Acta Materialia, 2017, 140: 258-273. [34]Li Z, Wang Y, Cheng X, et al. Compressive behavior of a Fe-Mn-Al-C lightweight steel at different strain rates[J]. Materials Science and Engineering A, 2020, 772: 138700. [35]Kim C, Hong H U, Jang J H, et al. Reverse partitioning of Al from κ-carbide to the γ-matrix upon Ni addition and its strengthening effect in Fe-Mn-Al-C lightweight steel[J]. Materials Science and Engineering A, 2021, 820: 141563. [36]Renault C, Churyumov A Y, Pozdniakov A V, et al. Microstructure and hot deformation behavior of FeMnAlCMo steel[J]. Journal of Materials Research and Technology, 2020, 9(3): 4440-4449. [37]Moon J, Park S J, Jang J H, et al. Investigations of the microstructure evolution and tensile deformation behavior of austenitic Fe-Mn-Al-C lightweight steels and the effect of Mo addition[J]. Acta Materialia, 2018, 147: 226-235. [38]Bartlett L N, Van Aken D C, Medvedeva J, et al. An atom probe study of kappa carbide precipitation and the effect of silicon addition[J]. Metallurgical and Materials Transactions A, 2014, 45(5): 2421-2435. |