[1]陈再枝, 蓝德年, 马党参. 模具钢手册[M]. 北京: 冶金工业出版社, 2020. [2]付俊岩, 尚成嘉. 如何用铌改善钢的性能[M]. 北京: 冶金工业出版社, 2007. [3]Wilmes S, Zwick G. Effect of niobium and vanadium as an alloying element in tool steels with high chromium content[C]//6th International Tooling Conference. 2002: 269-287. [4]胡心彬, 李 麟, 吴晓春. Thermo-calc在热作模具钢合金成分设计中的应用[J]. 热处理, 2004, 19(3): 27-31. Hu Xinbin, Li Lin, Wu Xiaochun. Application of thermo-calc software to the chemical composition design of hot work die steels[J]. Heat Treatment, 2004, 19(3): 27-31. [5]陈英伟, 吴晓春, 宋雯雯, 等. 含铌热作模具钢中碳化物的演变对热稳定性的影响[J]. 材料热处理学报, 2010, 31(5): 75-80. Chen Yingwei, Wu Xiaochun, Song Wenwen, et al. Effect of carbide evolution on thermal-stability in Nb-microalloyed hot work steel[J], Transactions of Materials and Heat Treatment, 2010, 31(5): 75-80. [6]牟 风, 燕 云, 康爱军, 等. Nb对大尺寸H13压铸模块冲击性能的影响[J]. 模具制造, 2020, 20(9): 90-92. Mou Feng, Yan Yun, Kang Aijun, et al. Effect of Nb on impact toughness of large-size H13 die-casting die blocks[J]. Die and Mould Manufacture, 2020, 20(9): 90-92. [7]高华耀, 马党参, 周 健, 等. 热处理工艺对新型高热稳定性热作模具钢组织与性能的影响[J]. 金属热处理, 2017, 42(10): 91-96. Gao Yaohua, Ma Dangshen, Zhou Jian, et al. Effect of heat treatment process on microstructure and properties of new high thermal stability hot working die steel[J]. Heat Treatment of Metals, 2017, 42(10): 91-96. [8]张 阳, 王福明, 唐郑磊, 等. SXQ500/550D钢奥氏体晶粒长大行为及其影响因素[J]. 金属热处理, 2019, 44(8): 110-118. Zhang Yang, Wang Fuming, Tang Zhenglei, et al. Austenite grain growth behavior and its influencing factors of SXQ500/550D steel[J]. Heat Treatment of Metals, 2019, 44(8): 110-118. [9]雍岐龙, 李永福, 孙珍宝, 等. 第二相与晶粒粗化时间及粗化温度[J]. 钢铁, 1993(9): 45-50. Yong Qilong, Li Yongfu, Sun Zhenbao, et al. Second-phase on grain coarsening time and temperature[J]. Iron and Steel, 1993(9): 45-50. [10]雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. [11]李天生, 张宏献. Nb对高Mo型H13钢中奥氏体晶粒度的影响[J]. 金属热处理, 2018, 43(2): 20-25. Li Tiansheng, Zhang Hongxian. Effect of Nb on austenite grain size of H13 steel with high molybdenum[J]. Heat Treatment of Metals, 2018, 43(2): 20-25. [12]刘宗昌, 杜志伟, 朱文方, 等. H13钢的回火二次硬化[J]. 兵器材料科学与工程, 2001, 24(3): 11-13. Liu Zongchang, Du Zhiwei, Zhu Wenfang, et al. Secondary hardening of H13 steel during tempering[J]. Ordnance Material Science and Engineering, 2001, 24(3): 11-13. [13]迟宏宵, 马党参, 王 昌, 等. Cr8Mo2SiV钢二次硬化机理的研究[J]. 金属学报, 2010, 46(10): 1181-1185. Chi Hongxiao, Ma Dangshen, Wang Chang, et al. Study on secondary hardening mechanism of Cr8Mo2SiV steel[J]. Acta Metallurgica Sinica, 2010, 46(10): 1181-1185. [14]孟显娜, 张道达, 尧登灿, 等. Cr12MoV模具钢冲头失效原因及改进措施[J]. 金属热处理, 2016, 41(11): 178-183. Meng Xianna, Zhang Daoda, Yao Dengcan, et al. Failure analysis and improvement measures of Cr12MoV steel punching die[J]. Heat Treatment of Metals, 2016, 41(11): 178-183. [15]章传国, 翟启杰, 郑 磊. 板坯加热工艺对厚规格管线钢组织性能的影响[J]. 钢铁, 2018, 53(3): 76-81. Zhang Chuanguo, Zhai Qijie, Zheng Lei. Effect of slab reheating processes on microstructure and properties for heavy gauge pipeline steel[J]. Iron and Steel, 2018, 53(3): 76-81. |