[1]Kelekanjeri V S K G, Gerhardt R A. Characterization of microstructural fluctuations in Waspaloy exposed to 760 ℃ for times up to 2500 h[J]. Electrochimica Acta, 2006, 51(8): 1873-1880. [2]曲敬龙, 毕中南, 唐 超, 等. 航空发动机用优质GH4738合金盘锻件研制进展[C]//第十三届中国高温合金年会摘要文集. 中国金属学会高温材料分会, 2015: 70. [3]董建新, 丁利生, 王振德. 烟气轮机涡轮盘和叶片用WASPALOY合金研究[J]. 中国材料科技与设备, 2006, 3(2): 68-73. Dong Jianxin, Ding Lisheng, Wang Zhende. Research of Waspaloy superalloy for industry gas turbine disk and blade[J]. China Materials Science, Technology and Equipment, 2006, 3(2): 68-73. [4]李凯强, 杨银辉, 钱 昊, 等. 03Cr18NiMoN 节镍双相不锈钢的热变形行为及热加工图[J]. 钢铁研究学报, 2019, 31(6): 563-572. Li Kaiqiang, Yang Yinhui, Qian Hao, et al. Hot deformation behavior and hot working drawing of 03Cr18NiMoN low-nickel duplex stainless steel[J]. Journal of Iron and Steel Research, 2019, 31(6): 563-572. [5]Quan G Z, Shi R J, Zhao J, et al. Modeling of dynamic recrystallization volume fraction evolution for AlCu4SiMg alloy and its application in FEM[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(6): 1138-1151. [6]马 潇, 徐 乐, 王毛球, 等. 25Cr3Mo3NiNbZr 钢热变形行为及微观组织研究[J]. 热加工工艺, 2019, 48(19): 23-29. Ma Xiao, Xu Le, Wang Maoqiu, et al. Study on hot deformation behavior and microstructure of 25Cr3Mo3NiNbZr steel[J]. Hot Working Technology, 2019, 48(19): 23-29. [7]蔡 薇, 高鹏哲, 陈辉明, 等. Cu-Cr-Zr-Ti 合金高温热变形行为及热加工图[J]. 金属热处理, 2019, 44(8): 147-154. Cai Wei, Gao Pengzhe, Chen Huiming, et al. High temperature deformation behavior and hot processing map of Cu-Cr-Zr-Ti alloy[J]. Heat Treatment of Metals, 2019, 44(8): 147-154. [8]刘 辉, 蔡新宇. 热加工参数对GH738合金动态再结晶行为的影响[J]. 钢铁研究学报, 2014, 26(3): 46-50. Liu Hui, Cai Xinyu. Effects of hot working parameters on dynamic recrystallization behaviors of GH738 alloy[J]. Journal of Iron and Steel Research, 2014, 26(3): 46-50. [9]王建国, 刘 东, 张 睿, 等. GH738合金在不同变形条件下的再结晶过程[J]. 重型机械, 2012(3): 103-107. Wang Jiandong, Liu Dong, Zhang Rui, et al. Recrystallization process of GH738 alloy at different deformation conditions[J]. Heavy Machinery, 2012(3): 103-107. [10]姚志浩, 王秋雨, 张麦仓, 等. GH738高温合金热变形过程显微组织控制与预测Ⅱ. 组织演化模型验证与应用[J]. 金属学报, 2011, 47(12): 1591-1599. Yao Zhihao, Wang Qiuyu, Zhang Maicang, et al. Microstructure control and prediction of GH738 superalloy during hot deformation Ⅱ. Verification and application of microstructural evolution model[J]. Acta Metallurgica Sinica, 2011, 47(12): 1591-1599. [11]张 勇, 李鑫旭, 韦 康, 等. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410. Zhang Yong, Li Xinxu, Wei Kang, et al. Hot deformation characteristics of novel wrought superalloy GH4975 extruded rod used for 850 ℃ turbine disc[J]. Acta Metallurgica Sinica, 2020, 56(10): 1401-1410. [12]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138. [13]Zhang H J, Chong L, Liu Y C, et al. Precipitation behavior during high-temperature isothermal compressive deformation of Inconel 718 alloy[J]. Materials Science and Engineering A, 2016, 677(20): 515-521. [14]Lin Y C, Wen D X, Li X H, et al. Hot deformation characteristics and dislocation substructure evolution of a nickel-base alloy considering effects of δ phase[J]. Journal of Alloys and Compounds, 2018, 764: 1008-1020. [15]Wu Y T, Liu Y C, Li C, et al. Deformation behavior and processing maps of Ni, Al-based superalloy during isothermal hot compression[J]. Journal of Alloys and Compounds, 2017, 712: 687-695. [16]Prasad Y V R K, Sasidhara S. Hot Working Guide: A Compendium of Processing Maps[M]. Materials Park, OH: ASM International, 1997: 1224. [17]董建新. 高温合金GH4738及其应用[M]. 北京: 冶金工业出版社, 2014: 247-254. [18]Yin X Q, Park C H, Li Y F, et al. Mechanism of continuous dynamic recrystallization in a 50Ti-47Ni-3Fe shape memory alloy during hot compressive deformation[J]. Journal of Alloys and Compounds, 2017, 693: 426-431. [19]Kapoor R, Reddy G B, Sarkar A. Discontinuous dynamic recrystallization in α-Zr[J]. Materials Science and Engineering A, 2018, 718: 104-110. [20]Hadadzadeh A, Mokdad F, Wells M A, et al. A new grain orientation spread approach to analyze the dynamic recrystallization behavior of a cast-homogenized Mg-Zn-Zr alloy using electron backscattered diffraction[J]. Materials Science and Engineering A, 2018, 709: 285-289. |