[1]He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels[J]. Science, 2017, 357(6355): 1029. [2] Han Y, Shi J, Xu L, et al. TiC precipitation induced effect on microstructure and mechanical properties in low carbon medium manganese steel[J]. Materials Science and Engineering A, 2011, 530(1): 643-651. [3]Pan Haijun, Ding Hua, Cai Minghui, et al. Precipitation behavior and austenite stability of Nb or Nb-Mo micro-alloyed warm-rolled medium-Mn steels[J]. Materials Science and Engineering A, 2019, 766: 1-8. [4]Abbasi E, Rainforth W M. Microstructural evolution of Nb-V-Mo and V containing TRIP-assisted steels during thermomechanical processing[J]. Journal of Materials Science and Technology, 2017, 33(4): 311-320. [5]王珍传. Ti\Mo微合金化板条马氏体钢析出, 组织及力学性能研究[D]. 昆明: 昆明理工大学, 2013. [6]康俊雨, 孙新军, 李昭东, 等. TiC和VC在低碳马氏体钢回火中的析出和粗化[J]. 钢铁, 2015, 50(10): 64-70. Kang Junyu, Sun Xinjun, Li Zhaodong, et al. Precipitation and coarsening of TiC and VC in tempering of low carbon martensitic steel[J]. Iron and Steel, 2015, 50(10): 64-70. [7]王树森, 赵 刚, 刘 璇, 等. 回火温度对Mo-V -Ti 钢组织与性能的影响[J]. 鞍钢技术, 2016, 4(5): 27-31. Wang Shusen, Zhao Gang, Liu Xuan, et al. Effect of tempering temperature on microstructures and properties of Mo-V-Ti steel[J]. Angang Technology, 2016, 4(5): 27-31. [8]Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensite in alloy steels[J]. Acta Materialia, 2006, 54(19): 5323-5331. [9]尉文超, 薛彦均, 孙 挺, 等. 退火温度对V-Ti-Mo钢析出相和力学性能的影响[J]. 金属热处理, 2020, 45(3): 25-29. Yu Wenchao, Xue Yanjun, Sun Ting, et al. Effect of annealing temperature on precipitates and mechanical properties of V-Ti-Mo steel[J]. Heat Treatment of Metals, 2020, 45(3): 25-29. [10]Chen C, Yen H, Kao F, et al. Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides[J]. Materials Science and Engineering A, 2009, 499(1): 162-166. [11]雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. [12]雍歧龙, 马鸣图, 吴宝榕. 微合金钢——物理和力学冶金[M]. 北京: 机械工业出版社, 1989: 65. [13]张正延, 孙新军, 雍岐龙, 等. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为[J]. 金属学报, 2016, 52(4): 410-418. Zhang Zhengting, Sun Xinjun, Yong Qilong, et al. Precipitation behavior of nanometer-sized carbides in Nb-Mo microalloyed high strengh steel and its strengthening mechanism[J]. Acta Metallurgica Sinica, 2016, 52(4): 410- 418. [14]Han Y, Shi J, Xu L, et al. Effect of hot rolling temperature on grain size and precipitation hardening in a Ti-microalloyed low-carbon martensitic steel[J]. Materials Science and Engineering A, 2012, 553: 192-199. [15]孙福玉, 徐温崇. Nb-V微合金钢在(γ+α)双相区的控轧及有关强化效应的估算[J]. 金属学报, 1986, 22(1): 120-127, 156-157. Sun Fuyu, Xu Wenchong. Nb-V microalloyed steel in (γ+α) controlled rolling in two-phase zone and estimation of strengthening effect[J]. Acta Metallurgica Sinica, 1986, 22(1): 120-127, 156-157. [16]张 可, 雍岐龙, 孙新军, 等. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响[J]. 金属学报, 2016, 52(5): 19-27. Zhang Ke, Yong Qilong, Sun Xinjun, et al.Effect of coilingtemperature on microstructure and mechanical properties of Ti-V-Mo complex microalloyed ultra-high strength steel[J]. Acta Metallurgica Sinica, 2016, 52(5): 19-27. [17]张 杰, 蔡庆伍, 樊艳秋, 等. 回火温度对E690海洋用钢组织和显微硬度的影响[J]. 材料热处理学报, 2012, 33(4): 55-61. Zhang Jie, Cai Qingwu, Fan Yanqiu, et al. Effect of tempering temperature on microstructure and microhardness of an E690 off-shore steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(4): 55-61. [18]康俊雨. Ti/V碳化物在回火马氏体中的沉淀析出及其强化行为研究[D]. 北京: 钢铁研究总院, 2015. |