[1]杨砚宁, 杨润华. 3D打印技术调控铜电化学沉积的试验探究[J]. 化学教学, 2020(7): 79-83, 88. Yang Yanning, Yang Runhua. Experimental exploration of adjusting electrochemical deposition of copper by using 3D printing technique[J]. Education in Chemistry, 2020(7): 79-83, 88. [2]吴媛媛, 钱双庆, 曹红蓓, 等. 基于3D打印技术的微沟槽金属铜电铸工艺[J]. 电镀与涂饰, 2019, 38(20): 1075-1080. Wu Yuanyuan, Qian Shuangqing, Cao Hongbei, et al. Fabrication of microgrooves by copper electroforming based on 3D printing technology[J]. Electropating and Finishing, 2019, 38(20): 1075-1080. [3]缪丹云. 3D打印技术在机械设备设计中的有效运用研究——评《3D打印技术与产品设计》[J]. 电镀与精饰, 2020, 42(3): 48. Miao Danyun. Research on the effective application of 3D printing technology in mechanical equipment design-Comment on "3D Printing technology and product design"[J]. Plating and Finishing, 2020, 42(3): 48. [4]赵 翔. 高粘度微细液滴3D打印复合驱动喷射系统关键技术研究[D]. 北京: 北京科技大学, 2019. Zhao Xiang. Research on key technologise of composed drive 3D printing jetting system with high viscosity micro droplets[D]. Beijing: University of Science and Technology Beijing, 2019. [5]黄 淳. 聚合物薄膜原位金属图形化生长技术及其应用研究[D]. 上海: 华东师范大学, 2020. Huang Chun. In-situ graphical metal growth technology based on polymer films and its application[D]. Shanghai: East China Normal University, 2020. [6]李发骏. 电化学还原二氧化碳制甲酸[D]. 南京: 东南大学, 2019. Li Fajun. Electrochemical reduction of carbon dioxide to formate[D]. Nanjing: Southeast University, 2019. [7]朱万宇, 黄 皓, 史青青, 等. 改善低碳钢镀镍层耐蚀性的方法[J]. 电镀与涂饰, 2020, 39(19): 1319-1321. Zhu Wanyu, Huang Hao, Shi Qingqing, et al. Measures to improve corrosion resistance of nickel coating on low-carbon steel[J]. Electropating and Finishing, 2020, 39(19): 1319-1321. [8]谢幸秦, 周 龙, 李延伟, 等. 中性电镀镍工艺探索研究[J]. 化工技术与开发, 2018, 47(2): 18-22. Xie Xingqin, Zhou Long, Li Yanwei, et al. Exploration of neutral nickel electrodeposition process[J]. Technology and Development of Chemical Industry, 2018, 47(2): 18-22. [9]石海明, 黄章崎, 所彭帮, 等. 阳极电流密度对电镀镍阳极溶解性能的影响[J]. 电镀与精饰, 2020, 42(3): 1-5. Shi Haiming, Huang Zhangqi, Suo Pengbang, et al. Effect of anode current density on dissolution properties of electroplated nickel anode[J]. Plating and Finishing, 2020, 42(3): 1-5. [10]王金娥, 杨小江. 90°弯管内流体流动数值模拟研究[J]. 武汉船舶职业技术学院学报, 2014, 13(1): 25-28. Wang Jin'e, Yang Xiaojiang. Numerical simulation of fluid flow in bend pipe[J]. Journal of Wuhan Institute of Shipbuilding Technology, 2014, 13(1): 25-28. [11]顾效源, 潘福奎, 汪文杰, 等. 90°圆截面弯管内稠油流动特性分析[J]. 过程工程学报, 2019, 19(1): 83-90. Gu Xiaoyuan, Pan Fukui, Wang Wenjie, et al. Numerical simulation on flow characteristics of heavy oil through circular-sectioned 90° bends[J]. The Chinese Journal of Process Engineering, 2019, 19(1): 83-90. [12]吴圣川, 李存海, 张 文, 等. 金属材料疲劳裂纹扩展机制及模型的研究进展[J]. 固体力学学报, 2019, 40(6): 489-538. Wu Shengchaun, Li Cunhai, Zhang Wen, et al. Recent research progress on mechanisms and models of fatigue crack growth for metallic materials[J]. Chinese Journal of Solid Mechanics, 2019, 40(6): 489-538. [13]王浩浩. 滑动速度对钢干滑动摩擦磨损行为的影响[D]. 镇江: 江苏大学, 2018. Wang Haohao. Effects of sliding speeds on the dry sliding wear behavior of steels[D]. Zhenjiang: Jiangsu University, 2018. [14]薛进进, 孙 琨, 方 亮, 等. 30CrMnSiNi2A钢干滑动摩擦磨损特性研究[J]. 摩擦学学报, 2016, 36(5): 614-621. Xue Jinjin, Sun Kun, Fang Liang, et al. Friction and wear characteristics of 30CrMnSiNi2A steel at dry sliding condition[J]. Tribology, 2016, 36(5): 614-621. [15]杨 磊, 韩 许, 李 伟, 等. 低碳低合金钢表面改性层的形貌与干滑动摩擦磨损性能[J]. 金属热处理, 2018, 43(3): 104-109. Yang Lei, Han Xu, Li Wei, et al. Morphology and dry sliding friction and wear properties of surface modified layer of low carbon low alloy steel[J]. Heat Treatment of Metals, 2018, 43(3): 104-109. |