[1]孙泽元. 铜铌复合线材的微观组织演变和热性能研究[D]. 重庆: 重庆大学, 2014. [2]Qiu Y H, Bai Q, Fu E G, et al. A novel approach to extracting hardness of copper/niobium (Cu/Nb) multilayer films by removing the substrate effect[J]. Materials Science and Engineering A, 2018, 724: 60-68. [3]Anvari S R, Monirvaghefi S M, Enayati M H. Wear characteristics of functionally graded nanocrystalline Ni-P coatings[J]. Surface Engineering, 2015, 31(9): 693-700. [4]Wasekar N P, Gowthami S, Jyothirmayi A, et al. Corrosion behaviour of compositionally modulated nanocrystalline Ni-W coatings[J]. Surface Engineering, 2019(1): 1-8. [5]Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys[J]. Science, 2012, 337(6097): 951-954. [6]Frolov T, Darling K A, Kecskes L J, et al. Stabilization and strengthening of nanocrystalline copper by alloying with tantalum[J]. Acta Materialia, 2012, 60(5): 2158-2168. [7]Zhang K, Weertman J R, Eastman J A. Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures[J]. Applied Physics Letters, 2005, 87(6): 833. [8]杨 宁, 朱雪婷, 尹兆益, 等. 磁控溅射制备Cu-Ta合金膜的研究[J]. 云南大学学报(自然科学版), 2013, 35(6): 791-796. [9]Rigsbee J M. Development of nanocrystalline copper-refractory metal alloys[J]. Materials Science Forum, 2007, 90(561-565): 2373-2378. [10]Darling K A, Rajagopalan M, Komarasamy M, et al. Extreme creep resistance in a microstructurally stable nanocrystalline alloy[J]. Nature, 2016, 537(7620): 378-381. [11]Botcharova E, Freudenberger J, Schultz L. Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu-Nb alloys[J]. Acta Materialia, 2006, 54(12): 3333-3341. [12]刘国涛, 孙 勇, 郭中正, 等. 磁控溅射Cu-Nb和Cu-Mo薄膜结构与性能[J]. 材料导报, 2012, 26(6): 49-53. Liu Guotao, Sun Yong, Guo Zhongzheng, et al. Structures and properties of Cu-Nb and Cu-Mo thin films deposited by magnetronsputtering[J]. Materials Review, 2012, 26(6): 49-53. [13]Ming L, Lu Y, Chen Z, et al. Characteristics of high strength and high conductivity Cu-Nb micro-composites[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 1619-1621. [14]Jia N, Raabe D, Zhao X. Crystal plasticity modeling of size effects in rolled multilayered Cu-Nb composites[J]. Acta Materialia, 2016, 111: 116-128. [15]Parab P, Bhui P, Bose S. Growth of nano-composites and nano-alloys of Cu-Nb thin films[J]. Thin Solid Films, 2017, 622: 148-152. [16]Guryev V V, Polikarpova M V, Lukyanov P A, et al. Size effects influence on conducting properties of Cu-Nb alloy microcomposites at cryogenic temperature[J]. Cryogenics, 2018, 90: 56-59. [17]Tian W, Dai J, Zhang L, et al. Microstructure and properties of nanocrystalline Cu-Ta thin films prepared by direct current magnetron sputtering[J]. Surface Engineering, 2021, 37(2): 160-168. [18]Mahalingam T, Lin C H, Wang L T, et al. Preparation and characterization of sputtered Cu films containing insoluble Nb[J]. Materials Chemistry and Physics, 2006, 100(2): 490-495. [19]Akbarpour M R, Kim H S. Microstructure, grain growth, and hardness during annealing of nanocrystalline Cu powders synthesized via high energy mechanical milling[J]. Materials and Design, 2015, 83: 644-650. [20]Lin C H, Chu J P, Mahalingam T, et al. Sputtered copper films with insoluble Mo for Cu metallization: A thermal annealing study[J]. Journal of Electronic Materials, 2003, 32(11): 1235-1239. [21]郭中正. 难混溶系(铜—钨, 钼, 铌)复合膜及多层膜的结构与性能研究[D]. 昆明: 昆明理工大学, 2016. [22]Sivaram S. Chemical vapor deposition: Thermal and plasma deposition of electronic materials[C]//International Symposium on High-performance Computing & International Conference on Advanced Low Power Systems. Springer-Verlag, 2005. [23]Wang L, Luo K, Ziqiang L I, et al. Design and application of a small electrode experimental installation for resistivity measurement of mineral and solid insulating material[J]. Science China Technological Sciences, 2011, 54(4): 819-825. [24]Asif S A S, Pethica J B. Nano scale creep and the role of defects[J]. MRS Proceedings, 1996, 436(1): 201-206. |