[1]赵茂密, 秦颐鸣, 零妙然, 等. 大型挤压在线淬火装备的现状和改进方案研究[J]. 铝加工, 2019(3): 51-54, 57. Zhao Maomi, Qin Yiming, Ling Miaoran, et al. Current situation and improvement scheme of large online quenching equipment[J]. Aluminum Fabrication, 2019(3): 51-54, 57. [2]杨 萍, 张 龙, 杨道瑞, 等. 淬火工艺对Cu沉淀强化钢组织和性能的影响[J]. 金属热处理, 2019, 44(4): 95-102. Yang Ping, Zhang Long, Yang Daorui, et al. Effect of quenching process on microstructure and properties of Cu precipitation strengthened steel[J]. Heat Treatment of Metals, 2019, 44(4): 95-102. [3]徐文芳, 张朋彦, 杨 鹏. 在线淬火型微合金高强钢的回火组织与性能[J]. 金属热处理, 2020, 45(11): 187-192. Xu Wenfang, Zhang Pengyan, Yang Peng. Tempered microstructure and properties of on-line quenched micro alloyed high strength steel[J]. Heat Treatment of Metals, 2020, 45(11): 187-192. [4]代英男, 张大维, 郑守东, 等. 铝型材风冷淬火系统结构优化[J]. 重型机械, 2020(1): 65-68. Dai Yingnan, Zang Dawei, Zheng Shoudong, et al. Structure optimization of aluminum air-hardening system[J]. Heavy Machinery, 2020(1): 65-68. [5]Fu P, Zhou P, Zhao T Y, et al. Study of the heat transfer coefficient of a nickel-based super alloy in the end-quench test with air[J]. International Journal of Thermal Sciences, 2020, 155(8): 106416. [6]Celik N. Effects of dimples' arrangement style of rough surface and jet geometry on impinging jet heat transfer[J]. Heat and Mass Transfer, 2020(56): 339-354. [7]Ingole S B, Sundaram K K. Experimental average Nusselt number characteristics with inclined non-confined jet impingement of air for cooling application[J]. Experimental Thermal and Fluid Science, 2016(77): 124-131. [8]Pawar S, Patel D K. The impingement heat transfer data of inclined jet in cooling applications: A review[J]. Journal of Thermal Science, 2020, 29(1): 1-12. [9]Yang J, Zhang Y, Gao M X, et al. Numerical study of transient conjugate heat transfer of the cryo-supersonic air-quenching based on amach-weighted pressure-based method[J]. International Journal of Heat and Mass Transfer, 2019, 134(5): 586-599. [10]Wang X W, Li H P, He L F, et al. Estimated temperature-dependent interfacial heat transfer coefficient during gas cooling based on firefly algorithm and finite element method[J]. Heat and Mass Transfer, 2019, 55(9): 2545-2558. [11]Jeyajothi K, Kalaichelvi P. Augmentation of heat transfer and investigation of fluid flow characteristics of an impinging air jet on to a flat plate[J]. Arabian Journal for Science and Engineering, 2019, 44: 5289-5299. [12]Moon J H, Lee S, Park J M, et al. Numerical study on flow and heat transfer characteristics of air-jet cooling system[J]. Journal of Mechanical Science and Technology, 2018, 32(12): 6021-6027. [13]Shevchenko S Y, Melnik Y A, Smirnov A E, et al. Comparative evaluation of methods for the determination of heat transfer coefficients of liquid and gaseous quenching media[J]. Mechanics and Industry, 2017, 18(7): 1-6. [14]Kilic M, Calisir T, Baskaya S. Experimental and numerical study of heat transfer from a heated flat plate in a rectangular channel with an impinging air jet[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(1): 329-344. [15]Lu Y, Rong Y, Sisson R D J. Equivalencycomparison of heat transfer coefficient in liquid and gas quenches[C]//TMS Meeting. 2015: 73-80. [16]徐 戎, 李落星, 王震虎. 铝合金喷雾淬火界面传热系数的反分析求解[J]. 金属热处理, 2018, 43(10): 232-236. Xu Rong, Li Luoxing, Wang Zhenhu. Determination of interfacial heat transfer coefficient of aluminum alloy during spray quenching based on inverse analysis method[J]. Heat Treatment of Metals, 2018, 43(10): 232-236. [17]Zhang L Q, Li L X. Determination of heat transfer coefficients at metal/chill interface in the casting solidification process[J]. Heat and Mass Transfer, 2013, 49: 1071-1080. [18]徐 戎, 李落星, 王震虎. 铝合金水射流参数对淬火界面传热行为的影响[J]. 金属热处理, 2019, 44(8): 246-252. Xu Rong, Li Luoxing, Wang Zhenhu. Effect of water jet parameters on heat transfer behavior at quenching interface of aluminum alloy[J]. Heat Treatment of Metals, 2019, 44(8): 246-252. [19]商宝川. 6082和6061铝合金固溶-时效制度及淬透性研究[D]. 长沙, 中南大学, 2011: 39-40. |