金属热处理 ›› 2021, Vol. 46 ›› Issue (12): 276-281.DOI: 10.13251/j.issn.0254-6051.2021.12.046

• 计算机应用 • 上一篇    下一篇

工艺参数对铝合金强风冷过程界面换热效率的影响

徐戎1, 李落星2   

  1. 1.湖南文理学院 机械工程学院, 湖南 常德 415000;
    2.湖南大学 机械与运载工程学院, 湖南 长沙 410082
  • 收稿日期:2021-08-27 出版日期:2021-12-25 发布日期:2022-02-18
  • 通讯作者: 李落星,教授,博士,E-mail:llxly2000@163.com
  • 作者简介:徐 戎(1980—),男,副教授,博士,主要研究方向为材料压力加工及先进制造技术,E-mail:samxurong@163.com。
  • 基金资助:
    湖南省教育厅科研项目(20B406);湖南省自然科学基金(2018JJ2274);湖南省高等学校省特色学科(湘教通〔2018〕469);湖南省高等学校科技创新团队(湘教通[2019]379

Effect of process parameters on interface heat transfer efficiency of aluminum alloy during forced air cooling

Xu Rong1, Li Luoxing2   

  1. 1. College of Mechanical Engineering, Hunan University of Arts and Science, Changde Hunan 415000, China;
    2. College of Mechanical and Vehicle Engineering, Hunan University, Changsha Hunan 410082, China
  • Received:2021-08-27 Online:2021-12-25 Published:2022-02-18

摘要: 通过一系列风冷淬火试验,研究了气体高速冲击金属热表面的换热过程,采用反传热法对界面热流密度 (q) 和界面传热系数 (h)进行了求解,探究了试样的表面粗糙度和淬火初始温度、试样表面的冷却介质流量密度对换热过程的影响。结果表明:试样淬火初始温度对风冷淬火界面换热有显著影响,当其从470 ℃增大到520 ℃时,qh的最大值增大约50%,淬火表面温度下降到200 ℃的平均冷却速率增大约43%。随试样表面介质流量密度增大,界面热交换呈现出先增大后减小的趋势,即存在一个与最高界面换热效率对应的临界试样表面介质流量密度,且喷射角度越接近90°,该临界值越小。随试样表面粗糙度增大,界面换热不断减小,这可能归因于越粗糙的表面对边界层内流体的钉扎作用越明显,越不利于提高界面换热效率。此外,在250~380 ℃区间,界面换热系数随表面温度变化曲线普遍存在一个凹陷区域,这可能与铝合金淬火冷却过程中二次相的析出有关。

关键词: 风冷淬火, 界面换热, 淬火初始温度, 表面介质流量密度, 表面粗糙度

Abstract: The heat transfer process of high-speed gas impact on the hot metal surface was studied through a series of air-cooled quenching experiments. The inverse heat transfer method was used to calculate the interfacial heat flux(q) and the interfacial heat transfer coefficient(h). The effects of initial quenching temperature of specimen, surface roughness and air flow density on specimen surface on heat transfer process were studied. The results show that the initial quenching temperature of specimen has a significant effect on the heat transfer at the air-cooled quenching interface. When it increases from 470 ℃ to 520 ℃, the maximum value of both q and h is increased by about 50%, and the average cooling rate of quenching surface temperature, when decreases to 200 ℃, is increased by about 43%. With the increase of the air flow density on specimen surface, the interfacial heat exchange shows a tendency of first increasing and then decreasing, that is, when the interfacial heat transfer efficiency is highest, there is a critical air flow density on specimen surface corresponding to it, and the closer the injection angle is to 90°, the smaller the critical value is. As the surface roughness of the specimen increases, the interfacial heat transfer decreases continuously, which may be attributed to the more obvious the rougher surface pinning effect on the fluid in the boundary layer, the more unfavorable it is to improve the interfacial heat transfer efficiency. Moreover, in the range between 250-380 ℃, there is generally a depressed region in the curve of h with surface temperature, which may be related to the precipitation of secondary phase during quenching and cooling of aluminum alloy.

Key words: air-cooled quenching, interface heat transfer, initial quenching temperature, surface air flow density, surface roughness

中图分类号: