[1]王晨充, 张 弛, 杨志刚, 等. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53(2): 175-182. Wang Chenchong, Zhang Chi, Yang Zhigang, et al. Design standard and analysis of ageing process in high Co-Ni secondary hardening steel[J]. Acta Metallurgica Sinica, 2017, 53(2): 175-182. [2]周 敏, 厉 勇, 刘荣佩, 等. 新型二次硬化渗碳钢的高温塑性及热加工图[J]. 钢铁, 2016, 51(6): 76-81, 93. Zhou Min, Li Yong, Liu Rongpei, et al. Hot ductility and processing maps of a new secondary hardening carburized steel[J]. Iron and Steel, 2016, 51(6): 76-81, 93. [3]王春旭, 张鹏杰, 高远航, 等. 2000 MPa级低成本复合强化超高强度钢的二次硬化行为[J]. 金属热处理, 2020, 45(11): 7-10. Wang Chunxu, Zhang Pengjie, Gao Yuanhang, et al. Secondary hardening behavior of 2000 MPa level low cost compound strengthened ultra-high strength steel[J]. Heat Treatment of Metals, 2020, 45(11): 7-10. [4]Zhang Y, Zhan D, Qi X, et al. Effect of tempering temperature on the microstructure and properties of ultrahigh-strength stainless steel[J]. Journal of Materials Science and Technology, 2019, 35(7): 1240-1249. [5]Veerababu R, Balamuralikrishnan R, Muraleedharan K, et al. Investigation of clusters in medium carbon secondary hardening ultra-high-strength steel after hardening and aging treatments[J]. Metallurgical and Materials Transactions A, 2015, 46(6): 2455-2468. [6]Tamura I, Tsuzaki K, Maki T. Morphology of lath martensite formed from deformed austenite in 18% Ni maraging steel[J]. Journal de Physique Colloques, 1982, 43: 551-556. [7]Sebastian J, Kuehmann C, Kern C, et al. New highly-processable, high-strength, high-durability, temperature-resistant gear steels[C]//Aeromat 22 Conference and Exposition American Society for Metals, 2011. [8]Shen T, Krantz T, Sebastian J, et al. Advanced gear alloys for ultra high strength applications[R]. 2011. [9]厉 勇, 王春旭, 黄顺喆, 等. 超高强度钢中M2C和β-NiAl相的复合析出强化行为[J]. 金属热处理, 2018, 43(6): 50-54. Li Yong, Wang Chunxu, Huang Shunzhe, et al. Combined precipitation strengthening behavior of M2C carbides and β-NiAl intermetallics in ultrahigh strength steel[J]. Heat Treatment of Metals, 2018, 43(6): 50-54. [10]廉学魁, 厉 勇, 王春旭, 等. 回火温度对25Co15Ni11Cr2MoE钢力学性能的影响[J]. 钢铁研究学报, 2018, 30(5): 386-391. Lian Xuekui, Li Yong, Wang Chunxu, et al. Effect of tempering on mechanical properties of 25Co15Ni11Cr2MoE steel[J]. Journal of Iron and Steel Research, 2018, 30(5): 386-391. [11]Wang J S, Mulholland M D, Olson G B, et al. Prediction of the yield strength of a secondary-hardening steel[J]. Acta Materialia, 2013, 61(13): 4939-4952. [12]Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel[J]. Acta Materialia, 2017, 140: 258-273. [13]Ning A, Liu Y, Gao R, et al. Effect of tempering condition on microstructure, mechanical properties and precipitates in AISI H13 steel[J]. JOM, 2021, 73: 2194-2202. [14]Miyamoto G, Iwata N, Takayama N, et al. Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite[J]. Acta Materialia, 2010, 58(19): 6393-6403. [15]Semchysen M, Bond A, Dundas H. Towards improved ductility and toughness[J]. Midwest Symposium on Circuits and Systems, 1971: 239-253. |