[1]张佳兴. 盾构机主驱动密封跑道再制造[J]. 机电工程技术, 2018, 47(9): 170-173. Zhang Jiaxing. Remanufacturing of the main driving seal runway of the shield machine[J]. Mechanical and Electrical Engineering Technology, 2018, 47(9): 170-173. [2]李润军, 单仁亮, 李润圣, 等. 盾构机主驱动密封维修改造关键技术[J]. 西安科技大学学报, 2014, 34(5): 579-584. Li Runjun, Shan Renliang, Li Runsheng, et al. Key technology of shield machine main drive sealing[J]. Journal of Xi'an University of Science and Technology, 2014, 34(5): 579-584. [3]Singh S, Goyal D K, Kumar P, et al. Laser cladding technique for erosive wear applications: A review[J]. Materials Research Express, 2020, 7(1): 012007. [4]王志明, 郭建永, 王 卓, 等. 激光熔覆涂层摩擦磨损性能的研究进展[J]. 材料保护, 2019, 52(10): 127-133. Wang Zhiming, Guo Jianyong, Wang Zhuo, et al. Research progress on friction and wear resistance of laser cladding coatings[J]. Materials Protection, 2019, 52(10): 127-133. [5]张志强, 杨 凡, 张天刚, 等. 激光熔覆碳化钛增强钛基复合涂层研究进展[J]. 表面技术, 2020, 49(10): 138-151. Zhang Zhiqiang, Yang Fan, Zhang Tiangang, et al. Research progress of laser cladding titanium carbide reinforced titanium-based composite coating[J]. Surface Technology, 2020, 49(10): 138-151. [6]乔 虹, 李庆棠, 符寒光, 等. 激光熔覆原位合成陶瓷相增强铁基熔覆层的组织和性能[J]. 焊接学报, 2015, 36(1): 67-69, 116. Qiao Hong, Li Qingtang, Fu Hanguang, et al. Microstructure and properties of in-situ synthesized ceramic phase reinforced Fe-based coating by laser cladding[J]. Transactions of the China Welding Institution, 2015, 36(1): 67-69, 116. [7]封 慧, 李剑峰, 孙 杰. 曲轴轴颈损伤表面的激光熔覆再制造修复[J]. 中国激光, 2014, 41(8): 86-91. Feng Hui, Li Jianfeng, Sun Jie. Study on remanufacturing repair of damaged crank shaft journal surface by laser cladding[J]. Chinese Journal of Lasers, 2014, 41(8): 86-91. [8]肖 洁, 丁 涛. 基于激光熔覆的采煤机高速轴耐蚀性能研究[J]. 激光杂志, 2020, 41(4): 130-135. Xiao Jie, Ding Tao. Study on high speed shaft corrosion resistance of axle based on laser cladding[J]. Laser Journal, 2020, 41(4): 130-135. [9]Zhai Jianhua, Liu Zhijie, Zhang Yong, et al. Laser cladding reparation of inner cylinder piston rods[J]. Laser and Optoelectronics Progress, 2017, 54(11): 273-280. [10]Wang Yibo, Zhao Shusen, Gao Wenyan, et al. Microstructure and properties of laser cladding FeCrBSi composite powder coatings with higher Cr content[J]. Journal of Materials Processing Technology, 2013, 214(4): 899-905. [11]Chen Suiyuan, Li Hui, Liu Lamei, et al. The laser direct deposition iron-based alloy coating with high wear resistance[C]//Proceedings of 2016 6th International Conference on Mechatronics, Materials, Biotechnology and Environment(ICMMBE 2016), 2016: 5. [12]郭 卫, 李凯凯, 柴蓉霞, 等. 27SiMn钢表面激光熔覆铁基合金组织和耐磨性分析[J]. 应用激光, 2018, 38(3): 351-357. Guo Wei, Li Kaikai, Chai Rongxia, et al. Analysis of microstructure and wear resistance of Fe-based alloy on 27SiMn steel surface by laser cladding[J]. Applied Laser, 2018, 38(3): 351-357. [13]Partes K, Sepold G. Modulation of power density distribution in time and space for high speed laser cladding[J]. Journal of Materials Processing Technology, 2007, 195(1/3): 27-33. [14]Lei Kaiyun, Qin Xunpeng, Liu Huaming, et al. Analysis and modeling of melt pool morphology for high power diode laser cladding with a rectangle beam spot[J]. Optics and Lasers in Engineering, 2018, 110: 89-99. [15]张庆茂, 刘喜明, 孙 宁, 等. 送粉式宽带激光熔覆——搭接基础理论的研究[J]. 金属热处理, 2001, 26(2): 25-28. Zhang Qingmao, Liu Ximing, Sun Ning, et al. Fundamental investigation on overlapping coating formed by broad beam powder feeding cladding[J]. Heat Treatment of Metals, 2001, 26(2): 25-28. [16]张若宾, 张瑞乾. 激光熔覆铁基合金的单层多道搭接工艺研究[J]. 热加工工艺, 2018, 47(22): 158-161. Zhang Ruobin, Zhang Ruiqian. Study on single-layer multi-channel overlapping process of laser cladding iron-based alloy[J]. Hot Working Technology, 2018, 47(22): 158-161. [17]董冬梅, 陈菊芳, 雷卫宁. 45钢表面激光熔覆层成形效果及稀释率研究[J]. 热加工工艺, 2019, 48(4): 163-166, 169. Dong Dongmei, Chen Jufang, Lei Weining. Investigation on forming effect and dilution rate of laser cladded coating on 45 steel surface[J]. Hot Working Technology, 2019, 48(4): 163-166, 169. [18]Gao W, Zhang Z, Zhao S, et al. Effect of a small addition of Ti on the Fe-based coating by laser cladding[J]. Surface and Coatings Technology, 2016, 291: 423-429. [19]Fan Pengfei, Zhang Guan. Study on process optimization of WC-Co50 cermet composite coating by laser cladding[J]. International Journal of Refractory Metals and Hard Materials, 2019, 87: 105133. [20]成 阳, 董 刚, 陈国喜, 等. 铌对镍基合金激光熔敷层组织和显微硬度的影响[J]. 机械工程材料, 2014, 38(9): 24-28, 98. Cheng Yang, Dong Gang, Chen Guoxi, et al. Effects of niobium element on microstructure and microhardness of Ni-based alloy laser cladding coating[J]. Materials for Mechanical Engineering, 2014, 38(9): 24-28, 98. [21]王 鲁, 杨 钢, 刘正东, 等. 基于Thermo-Calc和JMatPro模拟计算的新型镍基合金设计[J]. 材料热处理学报, 2017, 38(4): 193-199. Wang Lu, Yang Gang, Liu Zhengdong, et al. Design of a new Ni-base alloy based on simulated calculation on Thermo-Calc & JMatPro[J]. Transactions of Materials and Heat Treatment, 2017, 38(4): 193-199. [22]刘亚楠, 孙荣禄, 牛 伟, 等. 熔覆速率对Ti811合金激光熔覆涂层组织与性能的影响[J]. 表面技术, 2018, 47(12): 134-141. Liu Yanan, Sun Ronglu, Niu Wei, et al. Effect of scanning speed on microstructures and properties of Ti811 alloy laser cladding coatings[J]. Surface Technology, 2018, 47(12): 134-141. |