[1]李云婷, 董治中, 陈席国, 等. 9%~12%Cr耐热钢汽轮机缸体材料设计理念[J]. 一重技术, 2015(1): 42-46. Li Yunting, Dong Zhizhong, Chen Xiguo, et al. Design concept for steam turbine casing material: 9%~12%Cr heat resistant steel[J]. CFHI Technology, 2015(1): 42-46. [2]郑 慧. CB2汽轮机缸体铸钢件型砂的使用及控制要点[J]. 铸造, 2020, 69(5): 490-495. Zheng Hui. Application and control key points of molding sand for steel castings of CB2 turbine cylinder[J]. China Foundry, 2020, 69(5): 490-495. [3]李伟华, 陈 成, 张云博. 620 ℃超超临界汽轮机CB2阀壳铸件试制研究[J]. 铸造, 2019, 68(3): 264-268. Li Weihua, Chen Cheng, Zhang Yunbo. Casting process of CB2 valve casing for 620 ℃ ultra-supercritical steam turbine[J]. China Foundry, 2019, 68(3): 264-268. [4]刘正东, 陈正宗, 何西扣, 等. 630~700 ℃超超临界燃煤电站耐热管及其制造技术进展[J]. 金属学报, 2020, 56(4): 539-548. Liu Zhengdong, Chen Zhengzong, He Xikou, et al. Systematical innovation of heat resistant materials used for 630-700 ℃ advanced ultra-supercritical (A-USC) fossil fired boilers[J]. Acta Metallurgica Sinica, 2020, 56(4): 539-548. [5]雷丙旺, 李永清, 庞海平, 等. 新型马氏体耐热钢G115大口径厚壁无缝钢管制造技术[J]. 金属功能材料, 2020, 27(5): 14-19. Lei Bingwang, Li Yongqing, Pang Haiping, et al. Manufacturing technology of novel heat resistant steel G115 large-diameter heavy wall seamless pipe[J]. Metallic Functional Materials, 2020, 27(5): 14-19. [6]张留军, 宋肖阳, 李 康, 等. 9Cr-3W-3Co耐热钢铸件微观结构观察及性能评价[J]. 大型铸锻件, 2019(4): 29-31, 34. Zhang Liujun, Song Xiaoyang, Li Kang, et al. Microstructure observation and property evaluation of 9Cr-3W-3Co heat-resistant steel castings[J]. Heavy Casting and Forging, 2019(4): 29-31, 34. [7]Yan Peng, Liu Zhengdong, Bao Hansheng, et al. Effect of normalizing temperature on the strength of 9Cr-3W-3Co martensitic heat resistant steel[J]. Materials Science and Engineering A, 2014, 597: 148-156. [8]Yan Peng, Liu Zhengdong, Bao Hansheng, et al. Effect of tempering temperature on the toughness of 9Cr-3W-3Co martensitic heat resistant steel[J]. Materials and Design, 2014, 54: 874-879. [9]王冬梅, 张 庄, 赵爱彬, 等. 汽轮机缸体用耐热钢持久强度与塑性研究[J]. 物理测试, 2006(3): 8-11.Wang Dongmei, Zhang Zhuang, Zhao Aibin, et al. Creep rupturestrength and plasticity of heat resistance steel for stream-turbine cylinder[J]. Physics Examination and Testing, 2006(3): 8-11. [10]王冬梅, 张 庄, 白新房. 汽轮机缸体用钢高温时效韧性与组织研究[J]. 物理测试, 2006(2): 6-9, 17. Wang Dongmei, Zhang Zhuang, Bai Xinfang. Study on high temperature aged toughness and structure of steam-turbine cylinder body steel[J]. Physics Examination and Testing, 2006(2): 6-9, 17. [11]兑卫真, 陈熙霖, 杨晓华. 17-4PH钢的铸后热处理工艺研究[J]. 机电技术, 2003(S1): 306-311. [12]党君鹏. 高铬耐磨铸球的热处理工艺试验[J]. 铸造技术, 2012, 33(1): 83-84. Dang Junpeng. High-chromium cast ball heat treatment process research[J]. Foundry Technology, 2012, 33(1): 83-84. [13]黄柳燕, 王建伟, 王 鑫. 1000 MW超超临界汽轮机阀壳应力分析及设计优化[J]. 东方汽轮机, 2018(4): 12-15, 35. Huang Liuyan, Wang Jianwei, Wang Xin. Stress analysis and design optimization on 1000 MW ultra-supercritical steam turbine's valve shell[J]. Dongfang Turbine, 2018(4): 12-15, 35. [14]王宏光, 戴 韧, 刘 岩. 超临界汽轮机阀壳的温度场和应力场计算分析[J]. 上海理工大学学报, 2007(1): 75-78. Wang Hongguang, Dai Ren, Liu Yan. Numerical analysis of temperature and stress field in valve housing of super critical steam turbine[J]. Journal of Shanghai for Science and Technology, 2007(1): 75-78. [15]丛相州, 彭杏娜, 彭先宽, 等. G115钢大口径管件的热处理[J]. 金属热处理, 2021, 46(3): 90-95. Cong Xianghou, Peng Xingna, Peng Xiankuan, et al. Heat treatment for G115 large diameter pipe fittings[J]. Heat Treatment of Metals, 2021, 46(3): 90-95. [16]刘心阳, 陈正宗, 周 芸, 等. 热处理工艺对G115钢铸件组织与性能的影响[J]. 金属热处理, 2021, 46(10): 65-73. Liu Xinyang, Chen Zhengzong, Zhou Yun, et al. Effect of heat treatment on microstructure and properties of G115 steel casting[J]. Heat Treatment of Metals, 2021, 46(10): 65-73. |