金属热处理 ›› 2022, Vol. 47 ›› Issue (5): 14-24.DOI: 10.13251/j.issn.0254-6051.2022.05.003
袁智1,2, 张海莲3, 张会杰1,2, 马庆爽1,2, 贺翔3, 毕长波4, 李会军5, 高秋志1,2
收稿日期:
2022-01-08
修回日期:
2022-02-27
出版日期:
2022-05-25
发布日期:
2022-06-16
通讯作者:
张海莲,工程师,E-mail: hailianchina@126.com
作者简介:
袁 智(1998—),男,硕士研究生,主要研究方向为马氏体耐热钢,E-mail: zsby0902@163.com。
基金资助:
Yuan Zhi1,2, Zhang Hailian3, Zhang Huijie1,2, Ma Qingshuang1,2, He Xiang3, Bi Changbo4, Li Huijun5, Gao Qiuzhi1,2
Received:
2022-01-08
Revised:
2022-02-27
Online:
2022-05-25
Published:
2022-06-16
摘要: 新型含Al奥氏体耐热钢(Alumina-forming austenitic steel-AFA钢)是近年来开发的新型耐热钢,具有比传统耐热钢更优异的高温抗氧化性与蠕变性能,可望应用于超超临界火力发电机组关键部件。从不同AFA钢的合金元素调控入手,阐述了AFA钢成分设计原则,分析了合金元素差异对析出相的影响,以期揭示析出相的析出与粗化动力学及其与蠕变性能间的关系,总结了高温蠕变断裂机制,讨论了影响材料蠕变性能的因素,并对AFA钢的强化思路与未来应用进行了展望。
中图分类号:
袁智, 张海莲, 张会杰, 马庆爽, 贺翔, 毕长波, 李会军, 高秋志. 新型含Al奥氏体耐热钢高温蠕变性能的研究现状[J]. 金属热处理, 2022, 47(5): 14-24.
Yuan Zhi, Zhang Hailian, Zhang Huijie, Ma Qingshuang, He Xiang, Bi Changbo, Li Huijun, Gao Qiuzhi. Research status of high-temperature creep properties of novel alumina-forming austenitic heat-resistant steel[J]. Heat Treatment of Metals, 2022, 47(5): 14-24.
[1]Gao Q Z, Di X J, Liu Y C, et al. Recovery and recrystallization in modified 9Cr-1Mo steel weldments after post-weld heat treatment[J]. International Journal of Pressure Vessels and Piping, 2012, 93-94: 69-74. [2]Gao Q Z, Wang C, Qu F, et al. Martensite transformation kinetics in 9Cr-1.7W-0.4Mo-Co ferritic steel[J]. Journal of Alloys and Compounds, 2014, 610: 322-330. [3]Gao Q Z, Dong X, Li C, et al. Microstructure and oxidation properties of 9Cr-1.7W-0.4Mo-Co ferritic steel after isothermal aging[J]. Journal of Alloys and Compounds, 2015, 651: 537-543. [4]Gao Q Z, Lu C, Li H J, et al. Anisotropy and microstructural evolutions of X70 pipeline steel during tensile deformation[J]. Journal of Materials Research, 2018, 33(20): 3512-3520. [5]Gao Q Z, Zhang Y N, Zhang H L, et al. Precipitates and particles coarsening of 9Cr-1.7W-0.4Mo-Co ferritic heat-resistant steel after isothermal aging[J]. Scientific Reports, 2017, 5859: https://doi.org/10.1038/s41598-017-06191-2. [6]Li Y, Wang X. Strengthening mechanisms and creep rupture behavior of advanced austenitic heat resistant steel SA-213 S31035 for A-USC power plants[J]. Materials Science and Engineering A, 2020, 775: 138991. [7]Chai G C, Boström M, Olaison M, et al. Creep and LCF behaviors of newly developed advanced heat resistant austenitic stainless steel for A-USC[J]. Procedia Engineering, 2013, 55: 232-239. [8]Gao Q Z, Qu F, Zhang H L, et al. Austenite grain growth in alumina-forming austenitic steel[J]. Journal of Materials Research, 2016, 31 (12): 1732-1740. [9]Abe F. Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 ℃ and above[J]. Engineering, 2015, 1(2): 211-224. [10]Dryepondt S, Pint B A, Lara-curzio E. Creep behavior of commercial FeCrAl foils: Beneficial and detrimental effects of oxidation[J]. Materials Science and Engineering A, 2012, 550: 10-18. [11]Leo J R O, Pirfo B S, Fitzpatrick M E, et al. Microstructure, tensile and creep properties of an austenitic ODS 316L steel[J]. Materials Science and Engineering A, 2019, 749: 158-165. [12]Toda Y, Nakamura Y, Harada N, et al. Effect of the Laves phase and carbide on the creep strength of Fe-C-15Cr-W alloys[J]. Materials Science and Engineering A, 2020, 797: 140104. [13]Abe F. Strengthening mechanisms in steel for creep and creep rupture[J]. Creep-resistant Steels, 2008, 13(4): 279-304. [14]董 楠. 合金化元素对新型含Al奥氏体耐热钢/氧化层界面结构形成及结合能力的影响[D]. 太原: 太原理工大学, 2017. Dong Nan. Effects of alloying elements on the formation and bonding strength of new alumina-forming austenitic heat-resistantsteeI/oxide layer interface[D]. Taiyuan: Taiyuan University of Technology, 2017. [15]Yamamoto Y, Brady M P, Lu Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels[J]. Science, 2007, 316: 433-436. [16]Asteman H, Hartnagel W, Jakobi D. The influence of Al content on the high temperature oxidation properties of state-of-the-art cast Ni-base alloys[J]. Oxidation of Metals, 2013, 80(1-2): 3-12. [17]Yamamoto Y, Takeyama M, Lu Z P, et al. Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates[J]. Intermetallics, 2008, 16(3): 453-462. [18]Shin D, Yamamoto Y, Brady M P, et al. Modern data analytics approach to predict creep of high-temperature alloys[J]. Acta Materialia, 2019, 168: 321-330. [19]Jiang J D, Liu Z Y, Gao Q Z, et al. The effect of isothermal aging on creep behavior of modified 2.5Al alumina-forming austenitic steel[J]. Materials Science and Engineering A, 2020, 797: 140219. [20]Zhao W X, Zhou D Q, Jiang S H, et al. Ultrahigh stability and strong precipitation strengthening of nanosized NbC in alumina-forming austenitic stainless steels subjecting to long-term high-temperature exposure[J]. Materials Science and Engineering A, 2018, 738: 295-307. [21]Brady M P, Magee J, Yamamoto Y, et al. Co-optimization of wrought alumina-forming austenitic stainless steel composition ranges for high-temperature creep and oxidation/corrosion resistance[J]. Materials Science and Engineering A, 2014, 590: 101-115. [22]Jang M H, Kang J Y, Jang J H, et al. Microstructure control to improve creep strength of alumina-forming austenitic heat-resistant steel by pre-strain[J]. Materials Characterization, 2018, 137: 1-8. [23]Jang M H, Kang J Y, Jang J H, et al. Improved creep strength of alumina-forming austenitic heat-resistant steels through W addition[J]. Materials Science and Engineering A, 2017, 696: 70-79. [24]Jang M H, Moon J, Kang J Y, et al. Effect of tungsten addition on high-temperature properties and microstructure of alumina-forming austenitic heat-resistant steels[J]. Materials Science and Engineering A, 2015, 647: 163-169. [25]Zhou D Q, Zhao W X, Mao H H, et al. Precipitate characteristics and their effects on the high-temperature creep resistance of alumina-forming austenitic stainless steels[J]. Materials Science and Engineering A, 2015, 622: 91-100. [26]Jang M H, Kang J Y, Jang J H, et al. The role of phosphorus in precipitation behavior and its effect on the creep properties of alumina-forming austenitic heat-resistant steels[J]. Materials Science and Engineering A, 2016, 684: 14-21. [27]Yamamoto Y, Muralidharan G, Brady M P. Development of L12-ordered Ni3(Al, Ti)-strengthened alumina-forming austenitic stainless steel alloys[J]. Scripta Materialia, 2013, 69(11-12): 816-819. [28]Wang M, Sun H Y, Zheng W Y, et al. Creep behavior of an alumina-forming austenitic steel with simple alloy design[J]. Materials Today Communications, 2020, 25: 101303. [29]Yamamoto Y, Santella M L, Liu C T, et al. Evaluation of Mn substitution for Ni in alumina-forming austenitic stainless steels[J]. Materials Science and Engineering A, 2009, 524(1-2): 176-185. [30]Zhao B B, Fan J F, Liu Y Z, et al. Formation of L12-ordered precipitation in an alumina-forming austenitic stainless steel via Cu addition and its contribution to creep/rupture resistance[J]. Scripta Materialia, 2015, 109: 64-67. [31]Wen H Y, Zhao B B, Dong X P, et al. A systematic investigation of precipitates in matrix and at grain boundaries in an alumina-forming austenitic steel during creep testing at 700 ℃[J]. Metallurgical and Materials Transactions A, 2020, 51(8): 4186-4194. [32]蔡玉林, 郑运荣. 高温合金的金相研究[M]. 北京: 国防工业出版社, 1986. [33]Kipelova A, Belyakov A, Kaibyshev R. Laves phase evolution in a modified P911 heat resistant steel during creep at 923 K[J]. Materials Science and Engineering A, 2012, 532: 71-77. [34]Nitta H, Yamamoto T, Kanno R, et al. Diffusion of molybdenum in α-iron[J]. Acta Materialia, 2002, 50(16): 4117-4125. [35]Takemoto S, Nitta H, Iijima Y, et al. Diffusion of tungsten in α-iron[J]. Philosophical Magazine, 2007, 87(11): 1619-1629. [36]Meng H J, Wang J, Wang L, et al. The precipitation control in aged alumina-forming austenitic stainless steels Fe-15Cr-25Ni-3Al-NbWCu by W addition and its effect on the mechanical properties[J]. Materials Characterization, 2020, 163: 110233. [37]Powell D J, Pilkington R, Miller D A. The precipitation characteristics of 20%Cr/25%Ni-Nb stabilised stainless steel[J]. Acta Metallurgica, 1988, 36(3): 713-724. [38]Stein F, Palm M, Sauthoff G. Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability[J]. Intermetallics, 2004, 12(7-9): 713-720. [39]Hu B, Baker I. High temperature deformation of Laves phase precipitates in alumina-forming austenitic stainless steels[J]. Materials Letters, 2017, 195: 108-111. [40]Heggen M, Houben L, Feuerbacher M. Plastic-deformation mechanism in complex solids[J]. Nature Materials, 2010, 9(4): 332-336. [41]Machon L, Sauthoff G. Deformation behaviour of Al-containing C14 Laves phase alloys[J]. Intermetallics, 1996, 4(6): 469-481. [42]Chen S W, Zhang C, Xia Z X, et al. Precipitation behavior of Fe2Nb Laves phase on grain boundaries in austenitic heat resistant steels[J]. Materials Science and Engineering A, 2014, 616: 183-188. [43]Baker I, Afonina N, Wang Z, et al. Preliminary creep testing of the alumina-forming austenitic stainless steel Fe-20Cr-30Ni-2Nb-5Al[J]. Materials Science and Engineering A, 2018, 718: 492-498. [44]Peterson A, Baker I. Microstructural evolution of Fe-20Cr-30Ni-2Nb-5Al AFA steel during creep at 760 ℃[J]. Materials Science and Engineering A, 2021, 806: 140602. [45]Brady M P, Unocic K A, Lance M J, et al. Increasing the upper temperature oxidation limit of alumina forming austenitic stainless steels in air with water vapor[J]. Oxidation of Metals, 2011, 75(5/6): 337-357. [46]周德强, 刘雄军, 吴 渊, 等. 新型奥氏体耐热不锈钢再结晶行为及其对力学性能的影响[J]. 金属学报, 2014, 50(10): 1217-1223. Zhou Deqiang, Liu Xiongjun, Wu Yuan, et al. Recrystallization behavior and its influence on mechanical properties of an alumina-forming austenitic stainless steels[J]. Acta Metallurgica Sinica, 2014, 50(10): 1217-1223. [47]江琛琛, 高秋志, 甄云乾, 等. 热处理工艺对AFA耐热钢组织和力学性能的影响[J]. 材料科学与工艺, 2020, 29(2): 1-10. Jiang Chenchen, Gao Qiuzhi, Zhen Yunqian, et al. Effect of heat treatment process on microstructure and mechanical properties of AFA heat-resistant steel[J]. Materials Science and Technology, 2020, 29(2): 1-10. [48]Gao Q Z, Liu Z Y, Li H J, et al. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling[J]. Journal of Materials Science and Technology, 2021, 68: 91-102. [49]Jiang Y J, Gao Q Z, Zhang H L, et al. The effect of isothermal aging on microstructure and mechanical behavior of modified 2.5Al alumina-forming austenitic steel[J]. Materials Science and Engineering A, 2019, 748: 161-172. [50]Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12): 2817-2829. [51]Hu B, Trotter G, Wang Z, et al. Effect of boron and carbon addition on microstructure and mechanical properties of the aged gamma-prime strengthened alumina-forming austenitic alloys[J]. Intermetallics, 2017, 90: 36-49. [52]Satyanarayana D V V, Malakondaiah G, Sarma D S. Steady state creep behaviour of NiAl hardened austenitic steel[J]. Materials Science and Engineering A, 2002, 323(1/2): 119-128. [53]Chen L, Wang M, Wang Q, et al. Microstructure and mechanical property evolution of an AFA alloy with simple composition design during ageing at 700 ℃[J]. Materials Science and Engineering A, 2020, 779: 139157. [54]Facco A, Couvrat M, Magné D, et al. Microstructure influence on creep properties of heat-resistant austenitic alloys with high aluminum content[J]. Materials Science and Engineering A, 2020, 783: 139276. [55]Bei H, Yamamoto Y, Brady M P, et al. Aging effects on the mechanical properties of alumina-forming austenitic stainless steels[J]. Materials Science and Engineering A, 2010, 527(7/8): 2079-2086. [56]J B LeBleu Jr A, P R Mei A, V I Levit A, et al. Tensile properties of NiAl bicrystals[J]. Scripta Materialia, 1998, 38(3): 415-422. [57]Sauthoff G. Multiphase intermetallic alloys for structural applications[J]. Intermetallics, 2000, 8(9-11): 1101-1109. [58]Satyanarayana D V V, Malakondaiah G, Sarma D S. Characterization of the age-hardening behavior of a precipitation-hardenable austenitic steel[J]. Materials Characterization, 2001, 47(1): 61-65. [59]Baker I. A review of the mechanical properties of B2 compounds[J]. Materials Science and Engineering A, 1995, 192: 1-13. [60]Liao Y F, Baker I. Evolution of the microstructure and mechanical properties of eutectic Fe30Ni20Mn35Al15[J]. Journal of Materials Science, 2011, 46(7): 2009-2017. [61]Ball A, Smallman R E. The deformation properties and electron microscopy studies of the intermetallic compound NiAl[J]. Acta Metallurgica, 1966, 14(10): 1349-1355. [62]Kelly P M. The effect of particle shape on dispersion hardening[J]. Scripta Metallurgica, 1972, 6(8): 647-656. [63]Li L X, Gong X F, Wang C S, et al. Correlation between phase stability and tensile properties of the Ni-based superalloy MAR-M247[J]. Acta Metallurgica Sinica(English Letters), 2021, 34: 872-884. [64]Zhao B B, Dong X P, Sun F, et al. Impact of L12-ordered precipitation on the strength of alumina-forming austenitic heat-resistant steels[J]. Materials Science Forum, 2018, 941: 692-697. [65]Geneva T, Hu B, Harder R, et al. Precipitation kinetics during aging of an alumina-forming austenitic stainless steel[J]. Materials Science and Engineering A, 2016, 667: 147-155. [66]Ma K, Wen H, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy[J]. Acta Materialia, 2014, 62(5): 141-155. [67]Banerjee K, Militzer M, Perez M, et al. Nonisothermal austenite grain gro wth kinetics in a microalloyed X80 linepipe steel[J]. Metallurgical and Materials Transactions A, 2010, 41(12): 3161-3172. [68]Gibeling J C, Nix W D. The description of elevated temperature deformation in terms of threshold stresses and back stresses: A review[J]. Materials Science and Engineering, 1980, 45(2): 123-135. [69]Manashi A, Arnab C, Anindya D, et al. Influence of annealing texture on dynamic tensile deformation characteristics of dual phase steel[J]. Materials Science and Engineering A, 2018, 736: 209-218. [70]Mohamed F A, Park K T, Lavernia E J. Creep behavior of discontinuous SiC-Al composites[J]. Materials Science and Engineering A, 1992, 150(1): 21-35. [71]Zhou D Q, Xu X Q, Mao H H, et al. Plastic flow behaviour in an alumina-forming austenitic stainless steel at elevated temperatures[J]. Materials Science and Engineering A, 2014, 594: 246-252. [72]Gao Q Z, Jiang Y J, Liu Z Y, et al. Effects of alloying elements on microstructure and mechanical properties of Co-Ni-Al-Ti superalloy[J]. Materials Science and Engineering A, 2020, 779: 139139. [73]Ng D S, Chung D W, Toinin J P, et al. Effect of Cr additions on a γ-γ′ microstructure and creep behavior of a Co-based superalloy with low W content[J]. Materials Science and Engineering A, 2020, 778: 139108. [74]Moon J, Lee T H, Heo Y U, et al. Precipitation sequence and its effect on age hardening of alumina-forming austenitic stainless steel[J]. Materials Science and Engineering A, 2015, 645: 72-81. [75]Wang M, Sun H, Phaniraj M P, et al. Evolution of microstructure and tensile properties of Fe-18Ni-12Cr based AFA steel during aging at 700 ℃[J]. Materials Science and Engineering A, 2016, 672: 23-31. [76]Wen H Y, Zhao B B, Dong X P, et al. How big is the difference between precipitation at twin boundary and normal grain boundary in an alumina-forming austenitic steel during creep at 700 ℃?[J]. Materials Letters, 2020, 274: 128019. [77]Hu B, Trotter G, Baker I, et al. The effects of cold work on the microstructure and mechanical properties of intermetallic strengthened alumina-forming austenitic stainless steels[J]. Metallurgical and Materials Transactions A, 2015, 46(8): 3773-3785. [78]Wen H Y, Zhao B B, Zhou J, et al. Early segregation and precipitation at triple junction in an alumina-forming austenitic steel[J]. Materials Letters, 2021, 283: 128802. [79]Chellali M R, Balogh Z, Bouchikhaoui H, et al. Triple junction transport and the impact of grain boundary width in nanocrystalline Cu[J]. Nano Letters, 2012, 12(7): 3448-3454. [80]Jiang C C, Gao Q Z, Zhang H L, et al. Microstructure and mechanical properties of 4Al alumina-forming austenitic steel after cold-rolling deformation and annealing[J]. Materials, 2020, 13(12): 2767. [81]Liu Z Y, Gao Q Z, Zhang H L, et al. EBSD analysis and mechanical properties of alumina-forming austenitic steel during hot deformation and annealing[J]. Materials Science and Engineering A, 2019, 755: 106-115. [82]Trotter G, Rayner G, Baker I, et al. Accelerated precipitation in the AFA stainless steel Fe-20Cr-30Ni-2Nb-5Al via cold working[J]. Intermetallics, 2014, 53: 120-128. [83]Kuehmann C J, Voorhees P W. Ostwald ripening in ternary alloys[J]. Metallurgical and Materials Transactions A, 1996, 27(4): 937-943. [84]Liu W J. A new theory and kinetic modeling of strain-induced precipitation of Nb(CN) in microalloyed austenite[J]. Metallurgical and Materials Transactions A, 1995, 26(7): 1641-1657. [85]Wen H, Zhao B, Dong X, et al. A systematic investigation of precipitates in matrix and at grain boundaries in an alumina-forming austenitic steel during creep testing at 700 ℃[J]. Metallurgical and Materials Transactions A, 2020, 51(8): 4186-4194. [86]He J, Sandström R. Basic modelling of creep rupture in austenitic stainless steels[J]. Theoretical and Applied Fracture Mechanics, 2017, 89: 139-146. [87]Phaniraj C, Choudhary B K, Bhanu S R K, et al. Relationship between time to reach Monkman-Grant ductility and rupture life[J]. Scripta Materialia, 2003, 48(9): 1313-1318. [88]Wilshire B, Burt H. Damage evolution during creep of steels[J]. International Journal of Pressure Vessels and Piping, 2008, 85(1): 47-54. [89]Wang M, Sun H Y, Zhou Z J. Creep behaviors of Fe-18Ni-12Cr based alumina-forming austenitic steels with ultralow carbon[J]. Journal of Materials Science, 2021, 56(15): 9445-9457. |
[1] | 杨静, 董楠, 姜周华, 韩培德. 合金元素在fcc-Fe/NbX(X=C,N)界面的偏析及影响[J]. 金属热处理, 2022, 47(4): 57-62. |
[2] | 王云龙, 余伟, 张昳, 史佳新, 李明辉. 奥氏体化温度对贝氏体钢等温转变及力学性能的影响[J]. 金属热处理, 2022, 47(4): 80-85. |
[3] | 陈思君, 陈送义, 陈庚, 袁丁玲, 陈康华. Mg含量对2A14铝合金组织和力学性能的影响[J]. 金属热处理, 2022, 47(4): 86-92. |
[4] | 胡静, 陶科, 杨庆松, 李刚, 张德汉. 机械抛光后的时效工艺对0Cr25Al5电热合金拉拔性能的影响[J]. 金属热处理, 2022, 47(4): 171-177. |
[5] | 熊金生, 宁静, 苏杰, 姜庆伟. 淬火温度对低钴二次硬化钢组织和性能的影响[J]. 金属热处理, 2022, 47(3): 92-96. |
[6] | 郝天赐, 吴雍壕, 阴树标, 曹建春, 罗瀚宇. Zr对Ti-Mo复合微合金化钢形变奥氏体静态再结晶动力学和析出相的影响[J]. 金属热处理, 2022, 47(2): 41-47. |
[7] | 杨劼, 任慧平, 刘宗昌. 15Cr12CuSiMoMn钢的奥氏体晶粒长大动力学[J]. 金属热处理, 2022, 47(2): 53-58. |
[8] | 李敬, 杨跃辉, 苑少强, 张晓娟. Fe-40%Ni合金的高温氧化行为[J]. 金属热处理, 2022, 47(2): 74-77. |
[9] | 侯雅青, 张宇, 于明光, 王静静, 杨丽, 苏航. Q&P钢残留奥氏体含量的热动力学计算[J]. 金属热处理, 2022, 47(1): 25-31. |
[10] | 强菲, 王文, 张婷, 杨娟, 蔡军, 王快社. Al-Zn-Mg-Cu铝合金厚板搅拌摩擦焊接头搅拌区微观组织[J]. 金属热处理, 2022, 47(1): 135-141. |
[11] | 潘雪新, 姜海昌, 封辉, 李学斌, 鲁衍任, 胡小锋, 付鸿. 高强高导电CuCrZr合金时效过程中析出相的演化规律[J]. 金属热处理, 2021, 46(7): 7-12. |
[12] | 苗华军, 李国平. 310S耐热不锈钢高温长期时效过程中的组织演变[J]. 金属热处理, 2021, 46(7): 56-59. |
[13] | 程磊, 孙彬, 高炜, 杜重洋. 氧化时间及铬含量对Fe-Cr钢高温氧化行为的影响[J]. 金属热处理, 2021, 46(7): 65-71. |
[14] | 于江涵, 耿铁强, 李文, 朱正旺, 张海峰. Ni-Al-W活性材料的界面扩散动力学[J]. 金属热处理, 2021, 46(7): 98-102. |
[15] | 王成, 郭宏丽, 孙健, 李德发. 淬火方式对Ti微合金化中碳钢组织和性能的影响[J]. 金属热处理, 2021, 46(6): 111-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 中国机械总院集团北京机电研究所有限公司 《金属热处理》编辑部
北京海淀区学清路18号 北京机电研究所有限公司内 邮政编码:100083 电话:010-62935465 82415083 E-mail:jsrcl@vip.sina.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn