[1]Xiao B, Su H H, Ding W F, et al. The influence of grinding parameters on the superficial hardening effect of 48MnV microalloyed steel [J]. Key Engineering Materials, 2006, 315-316: 15-19. [2]Pan L, Liu R, Wei Y, et al. Austenite dynamic recrystallization of the microalloyed forging steels 38MnVS during forging process [J]. Procedia Engineering, 2012, 27: 63-71. [3]杨占兵, 王 森, 王福明, 等. 冷却速度对含Ti非调质钢中晶内铁素体形成的影响[J]. 金属热处理, 2008, 33(6): 24-27. Yang Zhanbing, Wang Sen, Wang Fuming, et al. Effect of cooling rate on formation of intragranular ferrite in Ti-containing non-quenched and tempered steel [J]. Heat Treatment of Metals, 2008, 33(6): 24-27. [4]赵秀明, 毛向阳, 蔡 璐, 等. 锻后控冷对38MnVS非调质钢晶内铁素体形成及韧性的影响[J]. 材料热处理学报, 2013, 34(11): 114-118. Zhao Xiuming, Mao Xiangyang, Cai Lu, et al. Effect of controlled cooling after forging on formation of intragranular ferrite and toughness for a 38MnVS steel [J]. Transactions of Materials and Heat Treatment, 2013, 34(11): 114-118. [5]管 丽, 刘雅政, 周乐育, 等. 热变形后冷却速度对铁素体-贝氏体微合金钢组织演变的影响[J]. 特殊钢, 2007, 28(3): 35-37. Guan Li, Liu Yazheng, Zhou Leyu, et al. Effect of cooling rate on structure evolution of hot deformed ferrite-bainite micro alloying steel [J]. Special Steel, 2007, 28(3): 35-37. [6]Xiong Z, Liu S, Wang X, et al. The contribution of intragranular acicular ferrite microstructural constituent on impact toughness and impeding crack initiation and propagation in the heat-affected zone (HAZ) of low-carbon steels [J]. Materials Science and Engineering A, 2015, 636: 117-123. [7]Miyamoto G, Hori R, Poorganji B, et al. Interphase precipitation of VC and resultant hardening in V-added medium carbon steels [J]. ISIJ International, 2011, 51(10): 1733-1739. [8]Zhao F, Zhang Z, Liu Y, et al. The coarse microstructure of medium-carbon microalloyed steel crankshafts: Formation mechanism and finish forging control [J]. Steel Research International, 2020, 91: 1900572. [9]Rancel L, M Gómez, Medina S F, et al. Analysis of V(C, N) nanoparticles in a medium carbon bainitic microalloyed steel and their influence on strengthening [J]. International Journal of Materials Research, 2013, 104(6): 527-534. [10]Wu S, Li X C, Zhang J, et al. Microstructural refinement and mechanical properties of high-speed niobium-microalloyed railway wheel steel [J]. Steel Research International, 2015, 86(7): 775-784. [11]Zajac S, Siwecki T, Hutchinson W B, et al. Strengthening mechanisms in vanadium microalloyed steels intended for long products [J]. Transactions of the Iron and Steel Institute of Japan, 1998, 38(10): 1130-1139. [12]Wu M, Zhao F, Che J L, et al. The toughening mechanisms of microstructural variation and Ni addition in direct-cooledmicroalloyed ferrite-pearlite steels [J]. Materials Science and Engineering A, 2018, 738: 353-361. [13]杨占兵, 王福明, 宋 波, 等. 含Ti复合夹杂物对中碳非调质钢组织和力学性能的影响[J]. 北京科技大学学报, 2007, 29(11): 1096-1100. Yang Zhanbing, Wang Fuming, Song Bo, et al. Effect of Ti-containing complex inclusions on the microstructure and mechanical properties of medium carbon non-quenched and tempered steel [J]. Journal of University of Science and Technology Beijing, 2007, 29(11): 1096-1100. [14]周 煌, 刘铖霖, 曹建春, 等. 高强抗震钢筋原位拉伸的微观组织变形机理[J]. 钢铁研究学报, 2018, 30(10): 822-829. Zhou Huang, Liu Chenglin, Cao Jianchun, et al, Microstructure deformation mechanism of SEM in-situ tension in high-strength anti-seismic rebars [J]. Journal of Iron and Steel Research, 2018, 30(10): 822-829. [15]Chen W, Cao J, Yang Y, et al. Investigation on thestrengthening and toughening mechanism of 500 MPa V-Nb microalloyed anti-seismic rebars [J]. Materials Science, 2015, 21(4): 536-542. [16]De Cooman B C, Speer J G. Fundamentals of Steel Product Physical Metallurgy [M]. Warrendale: Association for Iron and Steel Technology, 2011. [17]雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. [18]Peng Z, Li L, Gao J, et al. Precipitation strengthening of titanium microalloyed high-strength steel plates with isothermal treatment [J]. Materials Science and Engineering A, 2016, 657: 413-421. [19]Smith E, Barnby J T. Crack nucleation in crystalline solids [J]. Metal Science Journal, 1967, 1: 56-64. |