[1]贾宝华, 刘 翔, 顾永强, 等. 稀土元素对钛合金的作用机制研究现状及展望[J]. 热加工工艺, 2019, 48(9): 1-4. Jia Baohua, Liu Xiang, Gu Yongqiang, et al. Research status and prospect of effect mechanism of rare earth elements on titanium alloys [J]. Hot Working Technology, 2019, 48(9): 1-4. [2]李明兵, 王新南, 商国强, 等. TC32钛合金不同热处理工艺下的组织性能及断裂机制[J]. 金属热处理, 2021, 46(4): 112-117. Li Mingbing, Wang Xinnan, Shang Guoqiang, et al. Microstructure, mechanical properties and fracture mechanism of TC32 titanium alloy with different heat treatment processes [J]. Heat Treatment of Metals, 2021, 46(4): 112-117. [3]邓同生, 李 尚, 卢 娇, 等. 稀土元素对钛合金蠕变性能影响规律综述[J]. 有色金属科学与工程, 2018, 9(6): 94-98. Deng Tongsheng, Li Shang, Lu Jiao, et al. Review on the effects of rare earths on the creep properties of titanium alloy [J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 94-98. [4]刘全明, 张朝晖, 刘世锋, 等. 钛合金在航空航天及武器装备领域的应用与发展[J]. 钢铁研究学报, 2015, 27(3): 1-4. Liu Quanming, Zhang Zhaohui, Liu Shifeng, et al. Application and development of titanium alloy in aerospace and military hardware [J]. Journal of Iron and Steel Research, 2015, 27(3): 1-4. [5]田永武, 朱乐乐, 李伟东, 等. 高温钛合金的应用及发展[J]. 热加工工艺, 2020, 49(8): 17-20. Tian Yongwu, Zhu Lele, Li Weidong, et al. Application and development of high temperature titanium alloys [J]. Hot Working Technology, 2020, 49(8): 17-20. [6]汤海芳, 赵永庆, 洪 权, 等. 稀土元素对高温钛合金组织和性能的影响[J]. 钛工业进展, 2010, 27(1): 16-21. Tang Haifang, Zhao Yongqing, Hong Quan, et al. Effects of rare earth elements on the structure and properties of high-temperature titanium alloy [J]. Titanium Industry Progress, 2010, 27(1): 16-21. [7]邓 炬, 杨冠军. 稀土元素在钛及钛合金中的作用[J]. 稀有金属材料与工程, 1993(5): 1-11. Deng Ju, Yang Guanjun. Effect ofrare earth elements in titanium and titanium alloys [J]. Rare Metal Materials and Engineering, 1993(5): 1-11. [8]Wang K S, Tan J F, Hu P, et al. La2O3 effects on TZM alloy recovery, recrystallization and mechanical properties [J]. Materials Science and Engineering A, 2015, 636: 415-420. [9]Zheng Z, Kong F, Chen Y, et al. Effect of nano-Y2O3 addition on the creep behavior of an as-cast near-α titanium alloy [J]. Materials Characterization, 2021, 178: 111249. [10]Xiao W L, Wu S Q, Ping D H, et al. Effects of Sc addition on the microstructure and tensile properties of Ti-6.6Al-5.5Sn-1.8Zr alloy [J]. Materials Chemistry and Physics, 2012, 136(2): 1015-1021. [11]Vo N Q, Dunand D C, Seidman D N. Improving aging and creep resistance in a dilute Al-Sc alloy by microalloying with Si, Zr and Er [J]. Acta Materialia, 2014, 63: 73-85. [12]Yi M, Zhang P, Yang C, et al. Improving creep resistance of Al-12wt%Ce alloy by microalloying with Sc [J]. Scripta Materialia, 2021, 198: 113838. [13]陈志茹, 计 霞, 楚瑞坤, 等. 热处理工艺对激光熔化沉积TC4钛合金组织性能的影响[J]. 金属热处理, 2018, 43(11): 144-149. Chen Zhiru, Ji Xia, Chu Ruikun, et al. Effect of heat treatment on microstructure and properties of TC4 titanium alloy by laser melting deposition [J]. Heat Treatment of Metals, 2018, 43(11): 144-149. [14]湛利华, 李炎光, 黄明辉, 等. 2124铝合金蠕变时效本构方程[J]. 华南理工大学学报(自然科学版), 2012, 40(4): 107-111. Zhan Lihua, Li Yanguang, Huang Minghui, et al. Constitutive equation describing creep ageing of 2124 aluminum alloy [J]. Journal of South China University of Technology(Natural Science Edition), 2012, 40(4): 107-111. [15]王 雷, 屈 平, 李艳青, 等. 钛合金材料蠕变特性的理论与试验研究[J]. 船舶力学, 2018, 22(4): 464-474. Wang Lei, Qu Ping, Li Yanqing, et al. Theoretical and experimental investigations for creep properties of titanium alloy materials [J]. Journal of Ship Mechanics, 2018, 22(4): 464-474. [16]李有华, 杨 蓉, 庆达嘎, 等. 显微组织对TC4ELI钛合金常温拉伸蠕变行为影响研究[J]. 世界有色金属, 2018(23): 180-181. Li Youhua, Yang Rong, Qing Daga, et al. Effect of microstructure on tensile creep behavior of TC4ELl titanium alloy at room temperature [J]. World Nonferrous Metals, 2018(23): 180-181. [17]Deng T, Li S, Liang Y, et al. Effects of scandium and silicon addition on the microstructure and mechanical properties of Ti-6Al-4V alloy [J]. Journal of Materials Research and Technology, 2020, 9(3): 5676-5688. |