[1]Sims C T, Stoloff N S, Hagel W C. Superalloys II. High Temperature Materials for Aerospace and Industrial Power[M]. New York: Wiley-Interscience, 1987. [2]黄乾尧, 李汉康. 高温合金[M]. 北京: 冶金工业出版社, 2000. Huang Qianyao, Li Hankang. Superalloy[M]. Beijing: Metallurgical Industry Press, 2000. [3]谌启明, 杨 靖, 单先裕, 等. 热等静压技术的发展及应用[J]. 稀有金属与硬质合金, 2003, 31(2): 33-38. Chen Qiming, Yang Jing, Shan Xianyu, et al. Development and application of HIP technology[J]. Rare Metals and Cemented Carbides, 2003, 31(2): 33-38. [4]刘慧渊, 周武平, 王铁军. 热等静压技术的发展与应用[J]. 新材料产业, 2010(11): 12-17. Liu Huiyuan, Zhou Wuping, Wang Tiejun. Development and application of HIP technology[J]. Advanced Materials Industry, 2010(11): 12-17. [5]宋富阳, 张 剑, 郭会明, 等. 热等静压技术在镍基铸造高温合金领域的应用研究[J]. 材料工程, 2021, 49(1): 65-74. Song Fuping, Zhang Jian, Guo Huiming, et al. Research on application of hot isostatic pressing technology in the field of nickel-based cast superalloys[J]. Journal of Materials Engineering, 2021, 49(1): 65-74. [6]王 伟, 李 强, 杨维才, 等. 镍基铸造高温合金的热等静压改性研究[J]. 金属热处理, 2014, 39(1): 85-88. Wang Wei, Li Qiang, Yang Weicai, et al. Modification of cast nickel-base superalloy by hot isostatic pressing[J]. Heat Treatment of Metals, 2014, 39(1): 85-88. [7]张明军, 张雷雷, 胡颖涛, 等. 热等静压处理对K439B高温合金显微组织的影响[J]. 金属热处理, 2020, 45(11): 177-181. Zhang Mingjun, Zhang Leilei, Hu Yingtao, et al. Effect of hot isostatic pressing on microstructure of K439B superalloy[J]. Heat Treatment of Metals, 2020, 45(11): 177-181. [8]保 顺, 刘荣佩, 丰 涵, 等. 热等静压成形FeCrAl不锈钢的组织及脆性分析[J]. 金属热处理, 2021, 46(5): 9-13. Bao Shun, Liu Rongpei, Feng Han, et al. Microstructure and brittleness analysis of FeCrAl stainless steel by hot isostatic pressing[J]. Heat Treatment of Metals, 2021, 46(5): 9-13. [9]Zhang H C, Wang A Q, Wen Z X, et al. Effects of hotisostatic pressing(HIP) on microstructure and mechanical properties of K403 nickel-based superalloy[J]. High Temperature Materials and Processes, 2015, 35(5): 1-9. [10]Zhang G C, Hu W, Wen Z, et al. Influence of hot isostatic pressing on fatigue performance of K403 nickel-based superalloy[J]. Journal of Alloys and Compounds, 2016, 655: 114-123. [11]Kim M T, Kim D S, Oh O Y. Effect of γ′ precipitation during hot isostatic pressing on the mechanical property of a nickel-based superalloy[J]. Materials Science and Engineering A, 2008, 480(1/2): 218-225. [12]Pollock T M, Murphy W H, Goldman E H, et al. Grain defect formation during directional solidification of nickel base single crystals[C]//Superalloys, 1992: 125-134. [13]史振学, 刘世忠, 熊继春. 热等静压对单晶高温合金组织和持久性能的影响[J]. 稀有金属材料与工程, 2015, 44(9): 2300-2304. Shi Zhenxue, Liu Shizhong, Xiong Jichun. Effect of hot isostatic pressing on the microstructure and stress rupture properties of single crystal superalloy[J]. Rare Metal Materials and Engineering, 2015, 44(9): 2300-2304. [14]蔡玉林, 郑运荣. 高温合金的金相研究[M]. 北京: 国防工业出版社, 1986. Cai Yulin, Zheng Yunrong. Metallographic Study of Superalloys[M]. Beijing: National Defence Industry Press, 1986. [15]基什金 S T, 斯特洛干诺夫 G B. 铸造镍基高温合金中的碳化物强化[J]. 航空材料学报, 1991, 11(2): 1-8. Kishkin S T, Stroganov G B. Carbide strengthening in cast superalloy on nickel base[J]. Journal of Aeronautical Materials, 1991, 11(2): 1-8. [16]孙 文, 秦学智, 郭建亭, 等. 铸造镍基高温合金中初生MC碳化物的退化过程和机理[J]. 金属学报, 2016, 52(4): 455-462. Sun Wen, Qin Xuezhi, Guo Jianting, et al. Degeneration process and mechanism of primary MC carbides in a cast Ni-based superalloy[J]. Acta Metallurgica Sinica, 2016, 52(4): 455-462. |