[1]Zhang J, Cui X, Wang Y, et al. Characteristics of ultrahigh electrical conductivity for Cu-Sn alloys[J]. Materials Science and Technology, 2014, 30(4): 506-509. [2]李 周, 肖 柱, 姜雁斌, 等. 高强导电铜合金的成分设计、相变与制备[J]. 中国有色金属学报, 2019, 29(9): 2009-2049. Li Zhou, Xiao Zhu, Jiang Yanbin, et al. Composition design, phase transition and fabrication of copper alloys with high strength and electrical conductivity[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2009-2049. [3]Shalaby R M. Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi-Sn based lead-free solder alloys[J]. Materials Science and Engineering A, 2013, 560: 86-95. [4]Downs A J. Chemistry of Aluminium, Gallium, Indium and Thallium[M]. Blackie Academic and Professional, Chapman and Hall, 1992. [5]张小平. 高强高导Cu-Cr-In合金的组织与性能研究[D]. 赣州:江西理工大学, 2015. [6]Xin Chenglai, Huang Lin, Zeng Qiang, et al. A novel nano Cu/Ti-Si3N4 ceramic substrates fabricated by spark plasma sintering and its bonding mechanism[J]. Vacuum, 2021, 187: 110093. [7]Zhou Honglei, Chen Xiaohong, Liu Ping, et al. Study on mechanical properties and wear behavior of in-situ synthesized CNTs/CuCrZrY composites prepared by spark plasma sintering[J]. Vacuum, 2021, 188: 110180. [8]Tang Yanxia, Yang Xiaomin, Wang Rongrong, et al. Enhancement of the mechanical properties of graphene-copper composites with graphene-nickel hybrids[J]. Materials Science and Engineering, 2014, 599: 247-254. [9]Sciti D, Guicciardi S, Bellosi A, et al. Properties of a pressureless-sintered ZrB2-MoSi2 ceramic composite[J]. Journal of the American Ceramic Society, 2010, 89(7): 2320-2322. [10]赵 锴, 杨忠民, 王文涛, 等. 碳含量对Fe-15Mn-4.5Si-10Cr-5Ni-C系形状记忆合金性能的影响机制[J]. 钢铁, 2021, 56(2): 117-125. Zhao Kai, Yang Zhongmin, Wang Wentao, et al. Effect mechanism of carbon content on properties of Fe-15Mn-4.5Si-10Cr-5Ni-C-based shape memory alloy[J]. Iron and Steel, 2021, 56(2): 117-125. [11]李 贺, 尹海清, 易善杰, 等. 烧结温度对高速压制制备弥散强化铜材料导电率的影响[J]. 工程科学学报, 2015, 37(5): 621-625. Li He, Yin Haiqing, Yi Shanjie, et al. Influence of sintering temperature on the electrical conductivity of Al2O3/Cu composites compacted by high velocity compaction[J]. Chinese Journal of Engineering, 2015, 37(5): 621-625. [12]吴德振, 杨为良, 徐恒雷, 等. 高强高导铜合金的应用与制备方法[J]. 热加工工艺, 2019, 48(4): 19-25. Wu Dezhen, Yang Weiliang, Xu Henglei, et al. Application and preparation methods of high strength and high conductivity Cu alloy[J]. Hot Working Technology, 2019, 48(4): 19-25. [13]续晓霄, 戴姣燕, 符 轲, 等. 放电等离子烧结氧化锆陶瓷的工艺优化及性能[J]. 金属热处理, 2015, 40(8): 154-159. Xu Xiaoxiao, Dai Jiaoyan, Fu Ke, et al. Process optimization and properties of zirconia ceramics prepared by sparking plasma sintering[J]. Heat Treatment of Metals, 2015, 40(8): 154-159. [14]Borodianska H, Demirskyi D, Sakka Y, et al. Grain boundary diffusion driven spark plasma sintering of nanocrystalline zirconia [J]. Ceramics International, 2012, 38(5): 4385-4389. [15]罗国强, 吕时俊, 李 远, 等. Cu@Ag包覆粉体的SPS烧结及其致密机理研究[J]. 稀有金属材料与工程, 2021, 50(1): 286-290. Luo Guoqiang, Lü Shijun, Li Yuan, et al. SPS sintering of Cu@Ag coated powder and its dense mechanism[J]. Rare Metal Materials and Engineering, 2021, 50(1): 286-290. [16]付彦鹏, 尚海龙, 马冰洋, 等. C含量对间隙固溶Cu-C薄膜微结构、硬度及电阻率的影响[J]. 功能材料, 2020, 51(6): 6091-6095. Fu Yanpeng, Shang Hailong, Ma Bingyang, et al. The effect of C content on microstructure, hardness and resistivity of interstitial solid solution Cu-C thin films[J]. Journal of Functional Materials, 2020, 51(6): 6091-6095. |