[1]何云华, 喻桂英, 曾令军, 等. GH99合金成分及热处理控制对性能的影响[J]. 特钢技术, 1994(4): 15-20. He Yunhua, Yu Guiying, Zeng Lingjun, et al. Influence of composition and heat treatment control on properties of GH99 alloy[J]. Special Steel Technology, 1994(4): 15-20. [2]王怀柳. 改善GH99合金板材力学性能的研究[J]. 特钢技术, 2006, 11(1): 30-34. Wang Huailiu. Study on improving mechanical properties of GH99 alloy plate [J]. Special Steel Technology, 2006, 11(1): 30-34. [3]张弘斌. GH99高温合金高温变形行为及组织演化规律研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. Zhang Hongbin. Study on high temperature deformation behavior and microstructure evolution of GH99 superalloy[D]. Harbin: Harbin Institute of Technology, 2015. [4]Xu G S, Wu C, Liu Z H, et al. Effects of the solution treatment on microstructural evolution, mechanical properties, and fracture mechanism of nickel-based GH4099 superalloy[J]. Journal of Minerals and Materials Characterization and Engineering, 2021(9): 566-589. [5]Hu Y L, Lin X, Li Y L, et al. Effect of heat treatment on the microstructural evolution and mechanical properties of GH4099 additive-manufactured by directed energy deposition[J]. Journal of Alloys and Compounds, 2019(800): 163-173. [6]王 福. 高强度高塑性的GH99板材的热处理工艺与性能研究[J]. 特钢技术, 2019, 25(100): 3-5. Wang Fu. Study on heat treatment process and properties of GH99 plate with high strength and high plasticity[J]. Special Steel Technology, 2019, 25(100): 3-5. [7]李 范, 卢 强, 佘亚东. 激光选区熔化GH4099高温合金成形工艺及组织性能[J]. 材料热处理学报, 2021, 42(9): 98-104. Li Fan, Lu Qiang, She Yadong. Forming process and microstructure and properties of selective laser melted GH4099 superalloy[J]. Transactions of Materials and Heat Treatment, 2021, 42(9): 98-104. [8]韩志宇, 张平祥, 宋嘉明, 等. 热处理对粉末冶金Inconel 718高温合金组织及性能的影响[J]. 稀有金属材料与工程, 2021, 50(2): 693-698. Han Zhiyu, Zhang Pingxiang, Song Jiaming, et al. Effect of heat treatment on microstructure and mechanical properties of P/M Inconel 718 superalloy[J]. Rare Metal Materials and Engineering, 2021, 50(2): 693-698. [9]王 博. 粉末冶金FGH4169高温合金的制备、组织、力学性能及热加工性能研究[D]. 长沙: 中南大学, 2014. Wang Bo. Research on the preparation, microstructure, mechanical properties and hot deformation behavior of FGH4169 superalloy[D]. Changsha: Central South University, 2014. [10]吕 豪, 杨志斌, 王 鑫, 等. 激光增材制造GH4099合金热处理后的显微组织及拉伸性能[J]. 中国激光, 2018, 45(10): 1002003. Lü Hao, Yang Zhibin, Wang Xin, et al. Microstructures and tensile properties of GH4099 alloy fabricated by laser additive manufacturing after heat treatment[J]. China Journal of Lasers, 2018, 45(10): 83-88. [11]Zhang H B, Zhang K F, Zhou H P, et al. Effect of strain rate on microstructure evolution of a nickel-based superalloy during hot deformation[J]. Materials and Design, 2015(80): 51-62. [12]Mostafaei A, Behnamian Y, Krimer Y L, et al. Effect of solutionizing and aging on the microstructure and mechanical properties of powder bed binder jet printed nickel-based superalloy 625[J]. Materials and Design, 2016(111): 482-491. [13]Marquez C. Prior particle boundary precipitation in Ni-base superalloys[J]. The International Journal of Powder Metallurgy, 1989, 25(4): 301-308. [14]张 莹, 张义文, 孙志坤, 等. PPB对镍基粉末高温合金裂纹扩展行为的影响[J]. 稀有金属材料与工程, 2019, 48(10): 3282-3288. Zhang Ying, Zhang Yiwen, Sun Zhikun, et al. Influence of PPB on crack growth behavior of PM Ni-based superalloy[J]. Rare Metal Materials and Engineering, 2019, 48(10): 3282-3288. [15]赵军普, 陶 宇, 袁守谦, 等. 粉末冶金高温合金中的原始颗粒边界(PPB)问题[J]. 粉末冶金工业, 2010, 20(4): 43-49. Zhao Junpu, Tao Yu, Yuan Shouqian, et al. The problem of prior particle boundary precipitation in P/M superalloys[J]. Powder Metallurgy Industry, 2010, 20(4): 43-49. [16]Dong X M, Zhang X L, Du K, et al. Microstructure of carbides at grain boundaries in nickel based superalloys[J]. Journal of Materials Scienceand Technology, 2012, 28(11): 1031-1038. [17]Shu D L, Tian S G, Tian N, et al. Thermodynamic analysis of carbide precipitation and effect of its configuration on creep properties of FGH95 powder nickel-based superalloy[J]. Materials Science and Engineering A, 2017(700): 152-161. [18]秦升学, 赵蕊蕊, 张弘斌, 等. 时效热处理对GH99中强化相γ′相的影响[J]. 材料热处理学报, 2017, 38(2): 55-60. Qin Shengxue, Zhao Ruirui, Zhang Hongbin, et al. Influence of long-term thermal exposure on γ′-phase of GH99 alloy[J]. Transactions of Materials and Heat Treatment, 2017, 38(2): 55-60. [19]杨枬森, 魏育环, 于万众, 等. 时效热处理温度对GH99镍基合金的γ′行为和力学性能的影响[J]. 钢铁, 1986(10): 49-53. Yang Dansen, Wei Yuhuan, Yu Wanzhong, et al. Influence of aging temperature on the γ′ phase and mechanical properties of nickel-base alloy GH99[J]. Iron and Steel, 1986(10): 49-53. [20]夏长林, 裴丙红, 何云华. GH4099合金轧制棒材高温持久性能研究[J]. 钢铁研究学报, 2011, 23(S2): 115-118. Xia Zhanglin, Pei Binhong, He Yuhua. Study on High Temperature Creep Rupture Property of GH4099 Alloy Rolled Bar[J]. Journal of Iron and Steel Research, 2011, 23(S2): 115-118. [21]刘建强, 谢 伟, 王世普, 等. GH99合金锻棒的研制[J]. 宝钢技术, 2011(4): 44-48. Liu Jianqiang, Xie Wei, Wang Shipu, et al. Development of GH99 alloy forged bar[J]. Baosteel Technology, 2011(4): 44-48. [22]Hansen N. Hall-Petch relation and boundary strengthening[J]. Scripta Materialia, 2004, 51(8): 801-806. |