[1]罗 勇, 谢明强. QPQ技术在汽车零部件上的应用[J]. 现代零部件, 2013(7): 58-60. [2]李惠友, 罗德福, 吴少旭. QPQ技术的原理与应用[M]. 北京: 机械工业出版社, 2008. [3]Bonow V T, Maciel D S, Fenner N L, et al. Nitriding in non-toxic salts bath: An approach to implement cleaner production in the metallurgic industry[J]. Cleaner Engineering and Technology, 2021, 4: 100169. [4]池田芳宏, 彭惠民. 多用途的盐浴软氮化处理[J]. 国外机车车辆工艺, 2017(6): 21-24, 30. [5]Bellas L, Castro G, Mera L, et al. Effect of carbonitriding in a salt bath by a QPQ scheme on stainless steel 321 microstructure and service properties[J]. Metal Science and Heat Treatment, 2016, 58(5/6): 369-375. [6]Campagnolo A, Dabalà M, Meneghetti G. Effect of salt bath nitrocarburizing and post-oxidation on static and fatigue behaviours of a construction steel[J]. Metals, 2019, 9(12): 1306. [7]Funatani K. The trend in surface hardening of corrosion resistant alloys in Japan[C]//ASM-HTS Symposium on Surface Hardening of Corrosion Resistant Alloys. Cleveland Ohio, 2010. [8]樊东黎. 钢的低温多元共渗——节能化学热处理工艺[J]. 热处理, 2008, 23(6): 1-7. Fan Dongli. Low temperature multi-element co-penetrating for steels — Energy-saving thermo-chemical treatment process [J]. Heat Treatment, 2008, 23(6): 1-7. [9]Funatani K. Review of Japanese heat treatment and nitrocarburizing Processes[C]//USA Nitriding Symposium. Las Vegas, 2013: 14-15. [10]Funatani K. Low-temperature salt bath nitriding of steels[J]. Metal Science and Heat Treatment, 2004, 46(7/8): 277-281. [11]Lepienski C M, Kuromoto N K, Souza J F P, et al. Effect of hydrogen on mechanical properties of nitrided austenitic steels[J]. Philosophical Magazine, 2006, 86(33/35): 5407-5418. [12]C'wiek J, Baczyñska M. Behaviour of nitrided layers subjected to influence of hydrogen[J]. Archives of Materials Science and Engineering, 2010, 43(1): 30. [13]邢海生. 奥氏体不锈钢的低温液体渗氮耐蚀强化工艺研究[D]. 北京: 机械科学研究总院, 2011. [14]付 涛, 赵 程, 罗厚杉, 等. 低温盐浴氮碳共渗304奥氏体不锈钢的结构与性能[J]. 金属热处理, 2011, 36(12): 98-101. Fu Tao, Zhao Cheng, Luo Houshan, et al. Microstructure and properties of 304 austenitic stainless steel treated by low temperature salt bath nitrocarburing [J]. Heat Treatment of Metals, 2011, 36(12): 98-101. [15]Jun Wang, Yuanhua Lin, Jing Yan, et al. Influence of time on the microstructure of AISI 321 austenitic stainless steel in salt bath nitriding[J]. Surface and Coatings Technology, 2012, 206(15): 3399-3404. [16]Jun Wang, Yuanhua Lin, Jing Yan. Modification of AISI 304 stainless steel surface by the low temperature complex salt bath nitriding at 430C[J]. ISIJ International, 2012, 52(6): 1118-1123. [17]祝 伟, 罗德福. 低温盐浴渗氮工艺研究[J]. 金属加工(热加工), 2012(S2): 77-79. [18]Hoffmann R, Edenhofer B, Hoffmann F, et al. Nitrieren und Nitrocarburieren unterhalb 700 ℃[J]. HTM Journal of Heat Treatment and Materials, 1994, 49(5): 319-326. [19]Hoffmann R, Edenhofer B, Hoffmann F, et al. Nitrieren und Nitrocarburieren unterhalb 700 ℃ (Teil 2)[J]. HTM Journal of Heat Treatment and Materials, 1994, 49(6): 384-392. [20]Bell T, 齐立礼, 傅俊庆. 奥氏体氮碳共渗处理的物理冶金现状[J]. 国外金属热处理, 1988(1): 2-7. [21]邓 辉, 罗德福, 徐文婷, 等. 深层QPQ技术盐浴新配方的研究[J]. 金属热处理, 2012, 37(6): 63-65. Deng Hui, Luo Defu, Xu Wenting, et al. A new salt bath formulation for deep QPQ technology[J]. Heat Treatment of Metals, 2012, 37(6): 63-65. [22]Wang K, Luo D F, Zhang L. Research on fast nitriding by direct current field base on the deep-layer QPQ technology[J]. Physics Procedia, 2013, 50: 113-119. [23]徐文婷, 罗德福, 邓 辉, 等. 深层QPQ处理对45钢耐蚀性的影响[J]. 金属热处理, 2012, 37(4): 91-94. Xu Wenting, Luo Defu, Deng Hui, et al. Corrosion resistance of 45 steel after deep layer QPQ treatment[J]. Heat Treatment of Metals, 2012, 37(4): 91-94. [24]包文强, 罗德福, 张 磊. N80钢油管QPQ处理后的力学性能[J]. 金属热处理, 2016, 41(5): 57-61. Bao Wenqiang, Luo Defu, Zhang Lei. Mechanical properties of N80 steel oil tube after QPQ treatment[J]. Heat Treatment of Metals, 2016, 41(5): 57-61. [25]宗晓明, 高 飞, 权思佳, 等. 盐浴渗氮对G80Cr4Mo4V高温轴承钢组织与性能的影响[J]. 轴承, 2020(11): 40-44. Zong Xiaoming, Gao Fei, Quan Sijia, et al. Effect of salt bath nitriding on microstructure and properties of G80Cr4Mo4V high temperature bearing steel[J]. Bearing, 2020(11): 40-44. [26]蔡 铮, 陈善卫, 杨 衔, 等. 工程机械多路阀阀芯表面改性强化技术[J]. 液压气动与密封, 2015, 35(2): 66-68, 63, 65. Cai Zheng, Chen Shanwei, Yang Xian, et al. Engineering machinery multi way valve spool surface strengthening technology[J]. Hydraulics Pneumatics and Seals, 2015, 35(2): 66-68, 63, 65. [27]叶海燕, 刘庆教, 单爱党. 高频高侧载液压油缸活塞杆的QPQ处理[J]. 金属热处理, 2018, 43(2): 200-205. Ye Haiyan, Liu Qingjiao, Shan Aidang. QPQ treatment of piston rod for high frequency and heavy side load hydraulic cylinders[J]. Heat Treatment of Metals, 2018, 43(2): 200-205. [28]王海平, 李瑞卿, 孔春花, 等. QPQ技术在农用机械中的应用[J]. 金属加工(热加工), 2017(17): 43-45. [29]张 磊. QPQ处理汽车减震器活塞杆和制动盘油缸的研究[D]. 成都: 西华大学, 2016. Zhang Lei. Study on the application of QPQ process of automobile shock absorber piston rod and brake disc oil cylinder[D]. Chengdu: Xihua University, 2016. |