[1]张二红, 张华龙. 马氏体不锈钢发展现状与趋势[J]. 煤矿机械, 2014, 35(12): 16-18. Zhang Erhong, Zhang Hualong. Martensitic stainless steel development status and trends[J]. Coal Mine Machinery, 2014, 35(12): 16-18. [2]胡 凯, 武明雨, 李运刚. 马氏体不锈钢的研究进展[J]. 铸造技术, 2015, 36(10): 2394-2400. Hu Kai, Wu Mingyu, Li Yungang. Research progress of martensitic stainless steel[J]. Foundry Technology, 2015, 36(10): 2394-2400. [3]赵洪山, 滕 欢, 杨玉丹, 等. 国内厨用刀具产业链现状与发展前景分析[J]. 上海金属, 2020, 42(6): 80-84. Zhao Hongshan, Teng Huan, Yang Yudan, et al. Analysis on current situation of domestic kitchen knife industry chain and development trend[J]. Shanghai Metals, 2020, 42(6): 80-84. [4]裴新军, 程 格, 潘新宇, 等. 刀剪用马氏体不锈钢的现状和发展[J]. 热处理, 2020, 35(4): 1-6. Pei Xinjun, Cheng Ge, Pan Xinyu, et al. Current situation and development of martensitic stainless steel for knifes and scissors[J]. Heat Treatment, 2020, 35(4): 1-6. [5]金永华. 5Crl5MoV马氏体不锈钢的热处理[J]. 五金科技, 2005, 33(2): 31-35. Jin Yonghua. Heat treatment of 5Crl5MoV martensitic stainless steel[J]. Hardware Science and Technology, 2005, 33(2): 31-35. [6]Qin Bin, Ma Yongzhu, Jiang Laizhu. Research on the heat treatment of tool steel 5Cr15MoV[J]. Baosteel Technical Research, 2011, 5(3): 51-53. [7]闫 寒, 何志军, 吕 楠, 等. 凝固过程中马氏体不锈钢5Cr15MoV组织及碳化物的演变行为[J]. 重庆科技学院学报(自然科学版), 2019, 21(6): 7-13. Yan Han, He Zhijun, Lü Nan, et al. Evolution behavior of microstructure and carbide of martensitic stainless steel 5Cr15MoV during solidification[J]. Journal of Chongqing University of Science and Technology (Natural Science Edition), 2019, 21(6): 7-13. [8]张剑桥, 王志斌, 李 筱. 5Cr15MoV马氏体不锈钢热加工过程碳化物析出[J]. 金属热处理, 2017, 42(2): 167-169. Zhang Jianqiao, Wang Zhibin, Li Xiao. Carbide precipitation in 5Cr15MoV martensitic stainless steel during hot working[J]. Heat Treatment of Metals, 2017, 42(2): 167-169. [9]吴 溪, 赵志毅, 薛润东. 5Cr15MoV钢球化退火等温及缓冷中碳化物行为变化[J]. 材料热处理学报, 2014, 35(10): 98-102. Wu Xi, Zhao Zhiyi, Xue Rundong. Carbide behavior in 5Cr15MoV steel during the isothermal and slow cooling process of spheroidization annealing[J]. Transactions of Materials and Heat Treatment, 2014, 35(10): 98-102. [10]胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010: 154-156. [11]崔忠圻, 覃耀春. 金属学与热处理[M]. 北京: 机械工业出版社, 2015: 248-250. [12]谢振家. 高性能低合金钢中残余奥氏体调控机理及性能研究[D]. 北京: 北京科技大学, 2016. [13]刘俊亮, 张作贵, 宓小川, 等. X80钢中残余奥氏体定量分析的XRD与EBSD法比较[J]. 电子显微学报, 2010, 29(1): 689-692. Liu Junliang, Zhang Zuogui, Mi Xiaochuan, et al. Comparison of XRD and EBSD for quantitative analysis of remaining austenite in X80 pipeline steel[J]. Journal of Chinese Electron Microscopy Society, 2010, 29(1): 689-692. [14]李剑锋, 朱真才, 彭玉兴, 等. 原位合成M23C6-WC双相碳化物协同增强激光熔覆层摩擦磨损行为的研究[J]. 摩擦学学报, 2021, 41(6): 843-857. Li Jianfeng, Zhu Zhencai, Peng Yuxing, et al. Friction and wear behavior of in-situ synthesized M23C6-WC dual-carbides synergistically reinforced laser cladding coatings[J]. Tribology, 2021, 41(6): 843-857. |