[1]Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach[J]. Journal of Materials Science and Technology, 1999, 15(3): 193-197. [2]Becker T H, Kumar P, Ramamurty U. Fracture and fatigue in additively manufactured metals[J]. Acta Materialia, 2021, 219: 117240. [3]Abeens M, Muruganandhan R, Thirumavalavan K, et al. Surface modification of AA7075 T651 by laser shock peening to improve the wear characteristics[J]. Materials Research Express, 2019, 6(6): 066519. [4]周 楷, 杨 扬. 激光冲击喷丸对2195铝锂合金组织结构及抗应力腐蚀性能的影响[J]. 铝加工, 2019(2): 10-14. Zhou Kai, Yang Yang. Effect of LSP on microstructure and stress corrosion resistance of 2195 Al-Li alloy[J]. Aluminum Fabrication, 2019(2): 10-14. [5]Dga B, Mxa B, Dda B. On the role of powder flow behavior in fluid thermodynamics and laser processability of Ni-based composites by selective laser melting[J]. International Journal of Machine Tools and Manufacture, 2019, 137: 67-78. [6]Gu D, Shi X, Poprawe R, et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 2021, 372: 1487. [7]Liu C M, Gao H B, Li L Y, et al. A review on metal additive manufacturing: Modeling and application of numerical simulation for heat and mass transfer and microstructure evolution[J]. China Foundry, 2021, 18(4): 317-334. [8]Chadwick A F, Voorhees P W. The development of grain structure during additive manufacturing[J]. Acta Materialia, 2021, 211: 116862. [9]Lan L, Xin R, Jin X, et al. Effects of laser shock peening on microstructure and properties of Ti-6Al-4V titanium alloy fabricated via selective laser melting[J]. Materials, 2020, 13(15): 3261. [10]Guo W, Sun R, Song B, et al. Laser shock peening of laser additive manufactured Ti6Al4V titanium alloy[J]. Surface and Coatings Technology, 2018, 349: 503-510. [11]Chi J, Cai Z, Wan Z, et al. Effects of heat treatment combined with laser shock peening on wire and arc additive manufactured Ti17 titanium alloy: Microstructures, residual stress and mechanical properties[J]. Surface and Coatings Technology, 2020, 396: 125908. [12]Gujba A K, Medraj M. Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening[J]. Materials, 2014, 7(12): 7925-7974. [13]Ren X D, Zhou W F, Liu F F, et al. Microstructure evolution and grain refinement of Ti-6A1-4V alloy by laser shock processing[J]. Applied Surface Science, 2016, 363: 44-49. [14]Montross C S, Wei T, Lin Y, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: A review[J]. International Journal of Fatigue, 2002, 24(10): 1021-1036. [15]Kattoura M, Mannava S R, Qian D, et al. Effect of laser shock peening on elevated temperature residual stress, microstructure and fatigue behavior of ATI 718Plus alloy[J]. International Journal of Fatigue, 2017, 104: 366-378. [16]Palma T, Munther M, Sharma M, et al. Nanomechanical characterization of laser peened additively manufactured Inconel 718 superalloy[J]. Advanced Engineering Materials, 2019, 21(9): 1900499. [17]Gill A S, Telang A, Vasudevan V K. Characteristics of surface layers formed on Inconel 718 by laser shock peening with and without a protective coating[J]. Journal of Materials Processing Technology, 2015, 225: 463-472. [18]Sun R, Li L, Zhu Y, et al. Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening[J]. Journal of Alloys and Compounds, 2018, 747: 255-265. [19]Jin X, Lan L, Gao S, et al. Effects of laser shock peening on microstructure and fatigue behavior of Ti-6Al-4V alloy fabricated via electron beam melting[J]. Materials Science and Engineering, 2020, 780: 139199. [20]Slawik S, Bernarding S, Lasagni F, et al. Microstructural analysis of selective laser melted Ti6Al4V modified by laser peening and shot peening for enhanced fatigue characteristics[J]. Materials Characterization, 2021, 173: 110935. [21]Yeo I, Bae S, Amanov A, et al. Effect of laser shock peening on properties of heat-treated Ti-6Al-4V manufactured by laser powder bed fusion[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2020, 8(4): 1137-1150. [22]Kalentics N, Boillat E, Peyre P, et al. 3D laser shock peening-A new method for the 3D control of residual stresses in selective laser melting[J]. Materials and Design, 2017, 130: 350-356. [23]Kalentics N, Burn A, Cloots M, et al. 3D laser shock peening as a way to improve geometrical accuracy in selective laser melting[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(5-8): 1247-1254. [24]何 博, 兰 亮, 金鑫源, 等. 一种基于增材制造技术制备梯度结构金属件的方法: 109967739A[P]. 2021-07-21. [25]Lloyd H, Jon R R, Alexander R, et al. Laser peening: A tool for additive manufacturing post-processing[J]. Additive Manufacturing, 2018, 24: 67-75. [26]Munther M, Rowe R A, Sharma M, et al. Thermal stabilization of additively manufactured superalloys through defect engineering and precipitate interactions[J]. Materials Science and Engineering A, 2020, 798: 140119. [27]Yang Y, Zhou K, Zhang H, et al. Thermal stability of microstructures induced by laser shock peening in TC17 titanium alloy[J]. Journal of Alloys and Compounds, 2018, 767: 253-258. [28]杨 涛, 周王凡, 杨进德, 等. 激光喷丸对Ti-6Al-4V钛合金中高温性能影响研究[J]. 激光技术, 2017, 41: 526-530. Yang Tao, Zhou Wangfan, Yang Jinde, et al. Effect of laser shot peening on high temperature property of Ti-6Al-4V titanium alloy[J]. Laser Technology, 2017, 41: 526-530. [29]Guo W, Wang H, Peng P, et al. Effect of laser shock processing on oxidation resistance of laser additive manufactured Ti6Al4V titanium alloy[J]. Corrosion Science, 2020, 170: 108655. [30]Lu H, Wang Z, Cai J, et al. Effects of laser shock peening on the hot corrosion behaviour of the selective laser melted Ti6Al4V titanium alloy[J]. Corrosion Science, 2021, 188: 109558. [31]Kalentics N, Huang K, Seijas M, et al. Laser shock peening: A promising tool for tailoring metallic microstructures in selective laser melting[J]. Journal of Materials Processing Technology, 2018, 266: 612-618. [32]Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures[J]. Nature Reviews Materials, 2016, 1(5): 16019. [33]Kirchheim R. Grain coarsening inhibited by solute segregation[J]. Acta Materialia, 2002, 50(2): 413-419. [34]Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys[J]. Science, 2012, 337: 2121-2132. [35]Zhang X, Misra A. Superior thermal stability of coherent twin boundaries in nanotwinned metals[J]. Scripta Materialia, 2012, 66(11): 860-865. [36]Li Q, Cho J, Xue S, et al. High temperature thermal and mechanical stability of high-strength nanotwinned Al alloys[J]. Acta Materialia, 2018, 165: 142-152. [37]Liu X C, Zhang H W, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel[J]. Science, 2013, 342: 337-340. [38]Zhou X, Li X Y, Lu K. Enhanced thermal stability of nanograined metals below a critical grain size[J]. Science, 2018, 360: 526-530. [39]Li X Y, Zhou X, Lu K. Rapid heating induced ultrahigh stability of nanograined copper[J]. Science Advances, 2020, 6(17): 8003. [40]Chang Y, Liao Y, Suslov S, et al. Ultrahigh dense and gradient nano-precipitates generated by warm laser shock peening for combination of high strength and ductility[J]. Materials Science and Engineering A, 2014, 609: 195-203. [41]Zhou J Z, Meng X K, Huang S, et al. Effects of warm laser peening at elevated temperature on the low-cycle fatigue behavior of Ti6Al4V alloy[J]. Materials Science and Engineering A, 2015, 643: 86-95. [42]Liao Y, Cheng G J. Controlled precipitation by thermal engineered laser shock peening and its effect on dislocation pinning: Multiscale dislocation dynamics simulation and experiments[J]. Acta Materialia, 2013, 61(6): 1957-1967. [43]Hackel L, Fuhr J, Sharma M, et al. Test results for wrought and AM In718 treated by shot peening and laser peening plus thermal microstructure engineering[J]. Procedia Structural Integrity, 2019, 19: 452-462. [44]Balasubramanian K, Bragadeesvaran S R, Adarsh S A, et al. Surface properties of Ti-6Al-4V alloy treated by plasma ion nitriding process[J]. Materials Today: Proceedings, 2020(7): 957-961. [45]Cram D G, Fang X Y, Zurob H S, et al. The effect of solute on discontinuous dynamic recrystallization[J]. Acta Materialia, 2012, 60(18): 6390-6404. [46]Knauth P, Charaï A, Gas P. Grain growth of pure nickel and of a Ni-Si solid solution studied by differential scanning calorimetry on nanometer-sized crystals[J]. Scripta Metallurgica et Materialia, 1993, 28(3): 325-330. |