[1]Song J, She J, Chen D, et al. Latest research advances on magnesium and magnesium alloys worldwide[J]. Journal of Magnesium and Alloys, 2020, 8(1): 1-41 [2]Xu T, Yang Y, Peng X, et al. Overview of advancement and development trend on magnesium alloy[J]. Journal of Magnesium and Alloys, 2019, 7(3): 536-544. [3]Liu H, Cao F, Song G L, et al. Review of the atmospheric corrosion of magnesium alloys[J]. Journal of Materials Science & Technology, 2019, 35(9): 2003-2016. [4]Atrens A, Song G L, Liu M, et al. Review of recent developments in the field of magnesium corrosion[J]. Advanced Engineering Materials, 2015, 17(4): 400-453. [5]Sun K, Gao H, Hu J, et al. Effect of pH on thecorrosion and crack growth behavior of the ZK60 magnesium alloy[J]. Corrosion Science, 2021, 179: 109-135. [6]Wang B J, Xu D K, Wang S D, et al. Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy[J]. International Journal of Fatigue, 2019, 120: 46-55. [7]Singh R, Venkatesh V, Kumar V. Corrosion: Critical challenge in wider use of magnesium alloys[J]. Metals, 2018, 8(2): 2-3. [8]Shaw B A. Corrosion Resistance of Magnesium Alloys[M]. ASM International, 2003: 692-696. [9]时惠英, 董利芳, 蒋百灵, 等. AZ31B镁合金表面微弧电泳复合膜层微观结构及耐蚀性表征[J]. 稀有金属材料与工程, 2015, 44(7): 1679-1684. Shi Huiying, Dong Lifang, Jiang Bailing, et al. Microstructure and corrosion properties of micro-arc oxidation composite electrophoretic coating on AZ31B magnesium alloy[J]. Rare Metal Materials and Engineering, 2015, 44(7): 1679-1684. [10]樊志斌, 阎峰云, 邵敬涛, 等. 基于微弧氧化技术的复合涂层的研究现状[J]. 特种铸造及有色合金, 2014, 34(1): 66-69. Fan Zhibin, Yan Fengyun, Shao Jingtao, et al. Research status of composite coatings by micro-arc oxidation technology[J]. Special Casting and Nonferrous Alloys, 2014, 34(1): 66-69. [11]Chen F, Zhou H, Yao B, et al. Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces[J]. Surface and Coatings Technology, 2007, 201(9): 4905-4908. [12]ASTM E8/E8M. Standard test methods for tension testing of metallic materials[S]. [13]Saikrishna N, Reddy G P K, Munirathinam B, et al. Influence of bimodal grain size distribution on the corrosion behavior of friction stir processed biodegradable AZ31 magnesium alloy[J]. Journal of Magnesium and Alloys, 2016, 4: 68-76. [14]Guo H F, An M Z. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance[J]. Applied Surface Science, 2005, 246(1): 229-238. [15]Zhou X, Thompson G E, Skeldon P, et al. Film formation and detachment during anodizing of Al-Mg alloys[J]. Corrosion Science, 1999, 41(8): 1599-1613. [16]Durdu S, Aytaç A, Usta M. Characterization and corrosion behavior of ceramic coating on magnesium by micro-arc oxidation[J]. Journal of Alloys and Compounds, 2011, 509(34): 8601-8606. [17]Ryu H S, Mun S J, Lim T S, et al. Microstructure evolution during plasma electrolytic oxidation and its effects on the electrochemical properties of AZ91D Mg alloy[J]. Journal of Electrochemical Society, 2011, 158(9): 266-273. [18]Li Y, Lu F, Li H, et al. Corrosion mechanism of micro-arc oxidation treated biocompatible AZ31 magnesium alloy in simulated body fluid[J]. Progress in Natural Science: Materials International, 2014, 24(5): 516-522. [19]Ezhilselvi V, Nithin J, Balaraju J N, et al. The influence of current density on the morphology and corrosion properties of MAO coatings on AZ31B magnesium alloy[J]. Surface and Coatings Technology, 2016, 288(2): 221-229. [20]Jorcin J, Orazem M E, Nadine P, et al. CPE analysis by local electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2006, 51(8): 1473-1479. [21]Gu Y, Bandopadhyay S, Chen C F, et al. Effect of oxidation time on the corrosion behavior of micro-arc oxidation produced AZ31 magnesium alloys in simulated body fluid[J]. Journal of Alloys and Compounds, 2012, 543(3): 109-117. [22]Wang Y, Huang Z, Yan Q, et al. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test[J]. Applied Surface Science, 2016, 378: 435-442. [23]Toscano D, Shaha S K, Behravesh B, et al. Effect of forging on microstructure, texture, and uniaxial properties of cast AZ31B alloy[J]. Journal of Materials Engineering and Performance, 2017, 26(7): 3090-3103. [24]Němcová A, Skeldon P, Thompson G E, et al. Influence of plasma electrolytic oxidation on fatigue performance of AZ61 magnesium alloy[J]. Corrosion Science, 2014, 82(5): 58-66. [25]Khan S A, Miyashita Y, Mutoh Y, et al. Effect of anodized layer thickness on fatigue behavior of magnesium alloy[J]. Materials Science and Engineering A, 2008, 474(1): 261-269. [26]Wang X S, Guo X W, Li X D, et al. Improvement on the fatigue performance of 2024-T4 alloy by synergistic coating technology[J]. Materials, 2014, 7(5): 3533-3546. [27]Tazegul O, Muhaffel F, Meydanoglu O, et al. Wear and corrosion characteristics of novel alumina coatings produced by micro arc oxidation on AZ91D magnesium alloy[J]. Surface and Coatings Technology, 2014, 258(11): 168-173. |