[1]贾永敏, 肖桂勇, 许文花, 等. 25CrMoVA钢气体渗氮的脆性及耐磨性[J]. 材料热处理学报, 2013, 34(S2): 197-200. Jia Yongmin, Xiao Guiyong, Xu Wenhua, et al. Brittleness and wear resistance research of gas nitrided 25Cr2MoVA steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(S2): 197-200. [2]杨剑群, 刘 勇, 叶铸玉, 等. 2Cr13钢的表面气体渗氮处理[J]. 金属热处理, 2009, 34(7): 16-18. Yang Jianqun, Liu Yong, Ye Zhuyu, et al. Surface nitriding for 2Cr13 steel[J]. Heat Treatment of Metals, 2009, 34(7): 16-18. [3]Suh B S, Lee W J. Surface hardening by plasma nitriding on high chromium alloy steel[J]. Journal of Material Science Letters, 2001, 20: 147-149. [4]Bielawski J, Baranowska J. Formation of nitrided layers on duplex steel influence of multiphase substrate[J]. Surface Engineering, 2010, 26(4): 299-304. [5]Baranowska J. Importance of surface activation for nitrided layer formation in austenitic stainless steel[J]. Surface Engineering, 2010, 26(4): 293-298. [6]潘向南, 韩 靖, 韩月娇, 等. 表面纳米化对 304 奥氏体不锈钢渗氮的影响[J]. 热加工工艺, 2018, 47(10): 124-126. Pan Xiangnan, Han Jing, Han Yuejiao, et al. Effect of surface nano crystallization on nitriding of 304 austenitic stainless steel[J]. Hot Working Technology, 2018, 47(10): 124-126. [7]吴梦泽, 李烈军, 彭继华. 氢氮比对奥氏体不锈钢低温离子渗氮性能的影响[J]. 材料热处理学报, 2018, 39(9): 105-112. Wu Mengze, Li Liejun, Peng Jihua. Effect of hydrogen to nitrogen ratio on low temperature ion nitriding of austenitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2018, 39(9): 105-112. [8]马胜歌, 郭元元, 周 祎, 等. 304 不锈钢低温离子渗氮和氮碳共渗工艺[J]. 金属热处理, 2011, 36(4): 31-34. Ma Shengge, Guo Yuanyuan, Zhou Yi, et al. Low-temperature plasma nitriding and plasma nitrocarburising of AISI304 stainless steel[J]. Heat Treatment of Metals, 2011, 36(4): 31-34. [9]吴梦泽, 李烈军, 陈世佳, 等. 低温低压等离子弧辅助离子渗 316L 不锈钢的耐磨耐蚀性能[J]. 表面技术, 2017, 46(12): 118-125. Wu Mengze, Li Liejun, Chen Shijia, et al. Wear and corrosion resistance of plasma arc-assisted ion permeable 316L stainless steel at low temperature and low pressure[J]. Surface Technology, 2017, 46(12): 118-125. [10]赵 程. 奥氏体不锈钢的低温离子氮碳共渗研究[J]. 中国表面工程, 2003(5): 23-26. Zhao Cheng. Plasma nitrocarburising of austenitic stainless steel at low temperature[J]. China Surface Engineering, 2003(5): 23-26. [11]王永雷, 牛 强, 韩伯群, 等. 双相不锈钢低温离子硬化处理工艺[J]. 金属热处理, 2016, 41(1): 35-38. Wang Yonglei, Niu Qiang, Han Boqun, et al. Low temperature plasma hardening treatment for duplex stainless steel[J]. Heat Treatment of Metals, 2016, 41(1): 35-38. [12]王 亮, 许晓磊, 许 彬, 等. 奥氏体不锈钢低温渗氮层的组织与耐磨性[J]. 摩擦学学报, 2000, 20(1): 67-69. Wang Liang, Xu Xiaolei, Xu Bin, et al. Structure and wear-resistance of ion-nitrided austenite stainless steel[J]. Tribology, 2000, 20(1): 67-69. [13]兰晔峰, 王创造, 胡秋晨, 等. 奥氏体不锈钢离子渗N组织及性能[J]. 兰州理工大学学报, 2020, 46(1): 7-12. Lan Yefeng, Wang Chuangzao, Hu Qiuchen, et al. Microstructure and performance of austenitics stainless steel with ionic permeation of N[J]. Journal of Lanzhou University of Technology, 2020, 46(1): 7-12. [14]周 祎, 龙发进, 康光宇, 等. 低温离子渗氮时间对304不锈钢渗层的影响[J]. 金属热处理, 2007, 32(11): 56-59. Zhou Yi, Long Fajin, Kang Guangyu, et al. Influence of plasma nitriding time on microstructure and properties of nitrided layer for 304 stainless steel[J]. Heat Treatment of Metals, 2007, 32(11): 56-59. [15]李 伟, 习小明, 湛中魁, 等. 水热法制备锂离子电池正极材料LiFePO4及其性能研究[J]. 矿冶工程, 2011, 31(1): 88-91. Li Wei, Xi Xiaoming, Zhan Zhongkui, et al. Study on hydrothermal synthesis and performance of LiFePO4 cathode for lithium ion batteries[J]. Mining and Metallurgical Engineering, 2011, 31(1): 88-91. [16]阙奕鹏. 锂离子电池正极材料LiNi0.5Mn0.5O2制备及其化学性研究[D]. 哈尔滨: 哈尔滨工程大学, 2013. [17]孔文利. 磷酸铁锂锂离子电池正极材料的水热合成及其性能研究[D]. 青岛: 山东科技大学, 2018. [18]刘红梅. 5V级锂离子电池正极材料尖晶石LiNi0.5Mn1.5O4的制备与改性[D]. 苏州: 苏州大学, 2015. [19]彭甜甜, 林超林, 陈 尧, 等. 离子渗氮化合物层物相调控对耐磨性的影响[J]. 表面技术, 2020, 48(8): 172-177. Peng Tiantian, Lin Chaolin, Chen Yao, et al. Effect of phase regulation of plasma nitriding compound layeron wear resistance[J]. Surface Technology, 2020, 48(8): 172-177. [20]陈 尧, 纪庆新, 魏坤霞, 等. 不同渗氮温度下 38CrMoAl 钢低氮氢比无白亮层离子渗氮[J]. 中国表面工程, 2018, 31(2): 23-28. Chen Yao, Ji Qingxin, Wei Kunxia, et al. Plasma nitriding without white layer for 38CrMoAl steel with lower ratio of N2 to H2 under different temperature[J]. China Surface Engineering, 2018, 31(2): 23-28. |