[1]陈 勇, 臧立彬, 巨东英, 等. 高强度汽车齿轮表面强化技术的研究现状和发展趋势[J]. 中国表面工程, 2017, 30(1): 1-15. Chen Yong, Zang Libin, Ju Dongying, et al. Research status and development trend on strengthening technology of high strength automobile gear surface[J]. China Surface Engineering, 2017, 30(1): 1-15. [2]Ju D Y, Liu C, Inoue T. Numerical modeling and simulation of carburized and nitrided quenching process[J]. Journal of Materials Processing Technology, 2003, 143: 880-885. [3]Ju D Y, Inoue T. On the material process simulation code COSMAP-simulated examples and its experimental verification for heat treatment process[J]. Key Engineering Materials, 2007, 345-346: 955-958. [4]Sugianto A, Narazaki M, Kogawara M, et al. Numerical simulation and experimental verification of carburizing-quenching process of SCr420H steel helical gear[J]. Journal of Materials Processing Tech nology, 2009, 209(7): 3597-3609. [5]张 星, 唐进元. 20CrMnTi材料成分波动对齿轮渗碳淬火性能的影响[J]. 中南大学学报(自然科学版), 2017, 48(8): 1979-1987. Zhang Xing, Tang Jinyuan. Effect of 20CrMnTi material compositions fluctuation on gear performance after carburizing and quenching process[J]. Journal of Central South University (Natural Science Edition), 2017, 48(8): 1979-1987. [6]吴 凯, 唐进元, 孙思源, 等. 20CrMoH与8620H材料的齿轮热处理变形分析[J]. 机械传动, 2019, 43(2): 89-93. Wu Kai, Tang Jinyuan, Sun Siyuan, et al. Analysis of gear heat treatment deformation of 20CrMoH and 8620H materials[J]. Journal of Mechanical Transmission, 2019, 43(2): 89-93. [7]Miao S, Wang J, Ju D Y, et al. Improvement and analysis of fatigue strength for mild steel 20MnCrS5 during carburizing and quenching[J]. Materials Science, 2019, 26(2): 192-198. [8]丁 峰, 张 焱. 合金元素对钢热处理的影响[J]. 热处理, 2007, 13(1): 63-67. Ding Feng, Zhang Yan. Effect of alloy elements on heat treatment of steels[J]. Heat Treatment, 2007, 13(1): 63-67. [9]李秋阳. 金属材料特性及合金元素对热处理性能的影响[J]. 冶金管理, 2020, 106(11): 22-24. Li Qiuyang. Effect of metal material properties and alloying elements on heat treatment performance[J]. China Steel Focus, 2020, 106(11): 22-24. [10]桂伟民, 刘 义, 周根树, 等. Nb微合金化对Cr-Ni-Mo渗碳齿轮钢组织和性能的影响[J]. 金属热处理, 2021, 46(1): 114-119. Gui Weimin, Liu Yi, Zhou Genshu, et al. Effect of Nb microalloying on microstructure and properties of Cr-Ni-Mo carburized gear steel[J]. Heat Treatment of Metals, 2021, 46(1): 114-119. [11]吴 林, 邢长军, 姚春发, 等. 合金元素Ti及热处理工艺对0Cr18Ni10Ti奥氏体不锈钢组织及性能的影响[J]. 金属热处理, 2016, 41(10): 21-24. Wu Lin, Xing Changjun, Yao Chunfa, et al. Effect of Ti element and heat treatment on microstructure and properties of 0Cr18Ni10Ti austenitic stainless steel[J]. Heat Treatment of Metals, 2016, 41(10): 21-24. [12]孙思源, 唐进元, 刘 溢. 深冷处理工艺对半轴齿轮热处理变形的影响[J]. 机械传动, 2018, 42(2): 1-5. Sun Siyuan, Tang Jinyuan, Liu Yi. Effect of deep cryogenic treatment process on deformation of half axle gear after heat treatmen[J]. Journal of Mechanical Transmission, 2018, 42(2): 1-5. [13]Tong Daming, Gu Jianfeng, Yang Fan. Numerical simulation on induction heat treatment process of a shaft part: Involving induction hardening and tempering[J]. Journal of Materials Processing Technology, 2018, 262: 277-289. [14]Avrami M. Kinetics of phase change. I General theory[J]. The Journal of Chemical Physics, 1939, 7(12): 1103-1112. [15]William J,Mehl R. Reaction kinetics in processes of nucleation and growth[J]. Trans Metall Soc AIME, 1939, 135: 416-442. [16]Maynier P, Dollet J. Hardenability Concepts with Applications to Steels[M]. New York: AIME, 1978: 518-544. [17]Koistinen D F, Woodhead J H. Kinetics of the nucleation and growth of proeutectoid ferrite in some iron-carbon-chromium alloys [J]. JISI, 1971, 209(11): 883-889. [18]Miao Shan. Optimization design of carburizing and quenching process in consideration of transformation plasticity mechanism[D]. Saitama: Saitama Institute of Technology, 2019: 68-69. [19]张 星, 唐进元. 17CrNiMo6钢内齿圈渗碳仿真关键技术研究[J]. 金属热处理, 2015, 40(3): 185-189. Zhang Xing, Tang Jinyuan. Key technology in carburizing process simulation for 17CrNiMo6 steel annular gear[J]. Heat Treatment of Metals, 2015, 40(3): 185-189. [20]纪显彬, 李照国, 魏海霞, 等. 淬火温度和氮含量对马氏体不锈钢组织和性能的影响[J]. 金属热处理, 2021, 46(3): 130-134. Ji Xianbin, Li Zhaoguo, Wei Haixia, et al. Effects of quenching temperature and nitrogen content on microstructure and properties of martensitic stainless steel[J]. Heat Treatment of Metals, 2021, 46(3): 130-134. [21]Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels[J]. Materials Science and Engineering A, 2006, 438(1): 237-240. [22]Tian Y, Ju J, Fu H, et al. Effect of chromium content on microstructure, hardness, and wear resistance of as-cast Fe-Cr-B alloy[J]. Journal of Materials Engineering and Performance, 2019, 28(10): 6428-6437. |